skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral and counter-propagating Majorana fermions in a p-wave superconductor
Abstract Chiral and helical Majorana fermions are two archetypal edge excitations in two-dimensional topological superconductors. They emerge from systems of different Altland–Zirnbauer symmetries and characterized by Z and Z 2 topological invariants respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate in a single system without symmetry breaking. Here, we explore the peculiar behaviors of Majorana edge modes in topological superconductors with an additional ‘mirror’ symmetry which changes the bulk topological invariant to Z Z type. A theoretical toy model describing the proximity structure of a Chern insulator and apx-wave superconductor is proposed and solved analytically to illustrate a direct transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by mirror-graded Chern number and hosts a pair of counter-propagating Majorana fermions protected by the mirror symmetry. The edge theory is worked out in detail, and implications to braiding of Majorana fermions are discussed.  more » « less
Award ID(s):
1707484
PAR ID:
10303260
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
21
Issue:
12
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 123014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5– 10 H z ) ground noise that couples into the gravitational wave sensitive frequency band (10– 100 H z ) through light reflected in mirrors and other surfaces. We investigate the effect of trains during the Advanced LIGO third observing run, and propose a method to search for narrow band seismic frequencies responsible for contributing to increases in scattered light. Through the use of the linear regression tool Lasso (least absolute shrinkage and selection operator) and glitch correlations, we identify the most common seismic frequencies that correlate with increases in detector noise as 0.6– 0.8 H z , 1.7– 1.9 H z , 1.8– 2.0 H z , and 2.3– 2.5 H z in the LIGO Livingston corner station. 
    more » « less
  2. Abstract The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently, T a A s 2 , a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the ( 2 01 ) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface of T a A s 2 are trivial bulk bands. The absence of symmetry-protected surface state on the ( 2 01 ) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR of T a A s 2
    more » « less
  3. Abstract The sensitivity of urban canopy air temperature ( T a ) to anthropogenic heat flux ( Q A H ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of Δ T a / Δ Q A H (where Δ represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing Δ T a / Δ Q A H simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median Δ T a / Δ Q A H is around 0.01 K  W  m 2 1 over the CONUS. Besides the direct effect of Q A H on T a , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( c a ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and Δ T a / Δ Q A H is mostly controlled by the direct effect in summer. In winter, Δ T a / Δ Q A H becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with c a . The spatial and temporal (both seasonal and diurnal) variability of Δ T a / Δ Q A H as well as the nonlinear response of Δ T a to Δ Q A H are strongly related to the variability of c a , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. 
    more » « less
  4. Abstract This paper investigates uniqueness results for perturbed periodic Schrödinger operators on Z d . Specifically, we consider operators of the form H = Δ + V + v , where Δ is the discrete Laplacian, V : Z d R is a periodic potential, and v : Z d C represents a decaying impurity. We establish quantitative conditions under which the equation Δ u + V u + v u = λ u , for λ C , admits only the trivial solution u 0 . Key applications include the absence of embedded eigenvalues for operators with impurities decaying faster than any exponential function and the determination of sharp decay rates for eigenfunctions. Our findings extend previous works by providing precise decay conditions for impurities and analyzing different spectral regimes ofλ. 
    more » « less
  5. Abstract The stratospheric influence on summertime high surface ozone ( O 3 ) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find that O 3 transported from the stratosphere makes a significant contribution to the surface O 3 variability where background surface O 3 exceeds the 95thpercentile, especially over western U.S. Maximum covariance analysis is applied to O 3 anomalies paired with stratospheric O 3 tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S. 
    more » « less