skip to main content


Title: Resolving Mechanical Properties and Morphology Evolution of Free‐Standing Ferroelectric Hf 0.5 Zr 0.5 O 2
  more » « less
Award ID(s):
1752206
NSF-PAR ID:
10305075
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
23
Issue:
12
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferroelectric switching is demonstrated in CeO2‐doped Hf0.5Zr0.5O2(HZCO) thin films with application in back‐end‐of‐line compatible embedded memories. At low cerium oxide doping concentrations (2.0–5.6 mol%), the ferroelectric orthorhombic phase is stabilized after annealing at temperatures below 400 °C. HZCO ferroelectrics show reliable switching characteristics beyond 1011cycles in TiN/HZCO/TiN capacitors, several orders of magnitude greater than identically processed Hf0.5Zr0.5O2(HZO) capacitors, without sacrificing polarization and retention. Internal photoemission and photoconductivity experiments show that CeO2‐doping introduces in‐gap states in HZCO that are nearly aligned with TiN Fermi level, facilitating electron injection through these states. The enhanced average bulk conduction, which may lead to more uniform thermal dissipation in the HZCO films, delays irreversible degradation via breakdown that leads to device failure after repeated programming cycles.

     
    more » « less
  2. Hf0.5Zr0.5O2‐based materials have garnered significant attention for applications requiring ferroelectricity at the nanoscale. This behavior arises due to the stabilization of metastable phases at room temperature. However, the synthesis of phase pure Hf0.5Zr0.5O2remains a challenging problem in both thin films and nanoparticles. Herein, the crystallization of Hf0.5Zr0.5O2nanoparticles from an as‐synthesized amorphous phase is studied. By tailoring the aggregate nature of the intermediate amorphous nanoparticles via different drying processes, the crystallization pathway can be altered, resulting in significant differences in crystal structure, crystallite size, and crystallite morphology after calcination. X‐ray diffraction (XRD) and Rietveld refinement show the dominant crystallographic phase changes from a monoclinic structure to a cubic structure for samples with decreased aggregation. Samples prepared via freeze drying exhibit the most aggregation control and correspond with the observation of single‐crystalline particle aggregates and branching structures attributed to a crystallization by particle attachment mechanism. Herein, differing crystallization pathways lead to unique crystal morphologies that stabilize the traditionally high‐temperature phases of Hf0.5Zr0.5O2‐based materials that are necessary for functional applications.

     
    more » « less
  3. Abstract

    As an emerging nonvolatile memory technology, HfO2‐based ferroelectrics exhibit excellent compatibility with silicon CMOS process flows; however, the reliability of polarization switching in these materials remains a major challenge. During repeated field programming and erase of the polarization state of initially pristine HfO2‐based ferroelectric capacitors, the magnitude of the measured polarization increases, a phenomenon known as “wake‐up”. In this study, the authors attempt to understand what causes the wake‐up effect in Hf0.5Zr0.5O2(HZO) capacitors using nondestructive methods that probe statistically significant sample volumes. Synchrotron X‐ray diffraction reveals a concerted shift in HZO Bragg peak position as a function of polarization switching cycle number in films prepared under conditions such that they exhibit extremely large (≈3000%) wake‐up. In contrast, a control sample with insignificant wake‐up shows no such peak shift. Capacitance – voltage measurements show evolution in the capacitance loop with switching cycle number for the wake‐up sample and no change for the control sample. Piezoresponse force microscopy measurements are utilized to visualize the domain switching with wake‐up. The combination of these observations clearly demonstrates that wake‐up is caused by a field‐driven phase transformation of the tetragonal phase to the metastable ferroelectric orthorhombic phase during polarization switching of HZO capacitors.

     
    more » « less
  4. Abstract

    Knowledge about phase transitions in doped HfO2and ZrO2‐based films is crucial for developing future ferroelectric devices. These devices should perform in ambient temperature ranges with no degradation of device performance. Here, the phase transition from the polar orthorhombic to the nonpolar tetragonal phase in thin films is of significant interest. Detailed electrical and structural characterization is performed on 10 nm mixed HfxZr1‐xO2binary oxides with different ZrO2in HfO2and small changes in oxygen content. Both dopant and oxygen content directly impact the phase transition temperature between the polar and nonpolar phase. A first‐order phase transition with thermal hysteresis is observed from the nonpolar to the polar phase with a maximum in the dielectric constant. The observed phase transition temperatures confirm trends as obtained by DFT calculations. Based on the outcome of the measurements, the classification of the ferroelectric material is discussed.

     
    more » « less
  5. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less