skip to main content


Title: Combined experimental-theoretical study of electron mobility-limiting mechanisms in SrSnO3
Abstract

The discovery and development of ultra-wide bandgap (UWBG) semiconductors is crucial to accelerate the adoption of renewable power sources. This necessitates an UWBG semiconductor that exhibits robust doping with high carrier mobility over a wide range of carrier concentrations. Here we demonstrate that epitaxial thin films of the perovskite oxide NdxSr1xSnO3(SSO) do exactly this. Nd is used as a donor to successfully modulate the carrier concentration over nearly two orders of magnitude, from 3.7 × 1018 cm−3to 2.0 × 1020 cm−3. Despite being grown on lattice-mismatched substrates and thus having relatively high structural disorder, SSO films exhibited the highest room-temperature mobility, ~70 cm2 V−1 s−1, among all known UWBG semiconductors in the range of carrier concentrations studied. The phonon-limited mobility is calculated from first principles and supplemented with a model to treat ionized impurity and Kondo scattering. This produces excellent agreement with experiment over a wide range of temperatures and carrier concentrations, and predicts the room-temperature phonon-limited mobility to be 76–99 cm2 V−1 s−1depending on carrier concentration. This work establishes a perovskite oxide as an emerging UWBG semiconductor candidate with potential for applications in power electronics.

 
more » « less
Award ID(s):
2011401 1741801
NSF-PAR ID:
10305247
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
4
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multidimensional power devices can achieve performance beyond conventional limits by deploying charge‐balanced p‐n junctions. A key obstacle to developing such devices in many wide‐bandgap (WBG) and ultra‐wide bandgap (UWBG) semiconductors is the difficulty of native p‐type doping. Here the WBG nickel oxide (NiO) as an alternative p‐type material is investigated. The acceptor concentration (NA) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p‐n+heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunableNAfrom < 1018 cm−3to 2×1018 cm−3with the practical breakdown field (EB) of 3.8 to 6.3 MV cm−1. ThisNArange allows for charge balance to n‐type region with reasonable process latitude, andEBis high enough to pair with many WBG and UWBG semiconductors. The extractedNAis then used to design a multidimensional Ga2O3diode with NiO field‐modulation structure. The diodes fabricated with two differentNAboth achieve 8000 V breakdown voltage and 4.7 MV cm−1average electric field. This field is over three times higher than the best report in prior multi‐kilovolt lateral devices. These results show the promise of p‐type NiO for pushing the performance limits of power devices.

     
    more » « less
  2. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.

     
    more » « less
  3. Abstract

    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO3‐based heterostructures. Here, 2DEG formation at the LaScO3/BaSnO3(LSO/BSO) interface with a room‐temperature mobility of 60 cm2 V−1 s−1at a carrier concentration of 1.7 × 1013 cm–2is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO3‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO2‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics.

     
    more » « less
  4. Abstract

    The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead‐halide perovskite field‐effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor‐phase epitaxy technique that results in large‐area single‐crystalline cesium lead bromide (CsPbBr3) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin‐film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap‐free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall‐effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2V−1s−1at room temperature to ≈250 cm2V−1s−1at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon‐limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high‐performance perovskite electronic devices.

     
    more » « less
  5. Abstract

    The transfer‐free direct growth of high‐performance materials and devices can enable transformative new technologies. Here, room‐temperature field‐effect hole mobilities as high as 707 cm2V−1s−1are reported, achieved using transfer‐free, low‐temperature (≤120 °C) direct growth of helical tellurium (Te) nanostructure devices on SiO2/Si. The Te nanostructures exhibit significantly higher device performance than other low‐temperature grown semiconductors, and it is demonstrated that through careful control of the growth process, high‐performance Te can be grown on other technologically relevant substrates including flexible plastics like polyethylene terephthalate and graphene in addition to amorphous oxides like SiO2/Si and HfO2. The morphology of the Te films can be tailored by the growth temperature, and different carrier scattering mechanisms are identified for films with different morphologies. The transfer‐free direct growth of high‐mobility Te devices can enable major technological breakthroughs, as the low‐temperature growth and fabrication is compatible with the severe thermal budget constraints of emerging applications. For example, vertical integration of novel devices atop a silicon complementary metal oxide semiconductor platform (thermal budget <450 °C) has been theoretically shown to provide a 10× systems level performance improvement, while flexible and wearable electronics (thermal budget <200 °C) can revolutionize defense and medical applications.

     
    more » « less