skip to main content


Title: Identifying Internal Stresses during Mechanophore Activation
  more » « less
Award ID(s):
2045908 1651956
NSF-PAR ID:
10306350
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
4
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the stress distribution within fiber‐reinforced polymers (FRPs) is critical to extending their operational lifespan. The integration of mechanoresponsive molecular force probes, referred to as mechanophores, presents a potential solution by enabling direct monitoring of stress concentrations. In this study, spiropyran (SP) mechanophores (MPs) are embedded within a polydimethylsiloxane (PDMS) matrix to visualize stress localization during loading within a single fiber‐reinforced framework. The SP mechanophore undergoes a transition from a non‐fluorescent state to an active state (merocyanine) through isomerization in response to mechanical forces. Using a single fiber mounted axially within the matrix, the fundamental failure modes observed in conventional fiber‐reinforced composites are replicated. Samples are strained under uniaxial tensile loading along the fiber direction and the localization of stresses is observed via MP activation. Stresses are concentrated in the matrix near the fiber region that gradually decreases away from the fiber surface. Confocal microscopy is used to visualize mechanophore activation and quantitatively assess fluorescence intensity. Finite element modeling is used to develop a calibration to quantify the stresses based on the observed fluorescence intensity. These outcomes underscore the viability of employing these mechanoresponsive molecules as a potential means to visualize real‐time stress distribution, thereby facilitating the design of high‐performance composites.

     
    more » « less
  2. Chan, Edwin P. (Ed.)

    Stress concentrations in polymer matrix composites occur due to non-uniform loadings which develop near the interface between the matrix and reinforcement in a stressed composite. Methods to better understand the evolution of this stress concentration are required for the development of advanced composites. Mechanophores, which are stress responsive molecules, can be embedded into the polymer matrix and used to quantify the local stresses in a loaded composite. In this work, single particle model composites were fabricated by combining functionalized glass particles embedded into a silicone/mechanophore matrix. Confocal microscopy was then used to measure the mechanophore activationin situduring mechanical loading. The fluorescence intensity was correlated to maximum principal stress values obtained from a finite element analysis (FEA) model of the system utilizing an Ogden hyperelastic model to represent the elastomer. By calibrating stress to fluorescence intensity spatially, quantitative stress measurements can be obtained directly from fluorescent images. To validate this technique, calibrated stress values for a two-particle composite system were compared to a FEA model and good agreement was found. Further experiments were performed on silicone matrix composites containing short cylindrical particles oriented with their major axis parallel or perpendicular to the stretching direction. To demonstrate the versatility of the single particle intensity/stress calibration approach, maximum principal stress values were mapped on the fluorescence images of the cylindrical experiments. This technique has potential to quantify stress concentrations quickly and accurately in new composite designs without the use of FEA models or differential image correlation.

     
    more » « less
  3. Abstract

    The application of agricultural plastic products such as mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better‐quality harvest. However, mechanical abrasion of these plastic materials by soil particles could result in generation of microplastic (MP) pollutants that could harm soil organisms and impact food safety. This study aims to better understand the physicochemical mechanisms resulting in the fragmentation of low‐density polyethylene (LDPE). Herein, we used pellets and films to study the impacts of abrasive wear forces on their surface morphology variations and fragmentation behavior. An innovative laboratory approach was developed to abrade the plastic surface under controlled normal loadings and abrasion durations. The investigation of the plastics’ surface morphology variations due to the abrasion process revealed microcutting as the dominant process at low normal force (4 N). However, a combination of microploughing and microcutting occurred for new LDPE films by increasing the normal force to 8 N. Despite the significant surface morphology variations of the new LDPE film due to the abrasion process; the water contact angle did not alter. Furthermore, the fragmentation behavior of photodegraded LDPE pellets and films was compared to the new plastics. The extent of MPs (3 µm < dp < 162 µm) generation due to fragmentation was studied using fluorescence microscopy imaging. The localized stress and strains at the contact sites of plastic and sand particles resulted in abrasion of the plastic surface. According to the results, the normal loadings and duration of abrasion played a significant role in the degree of fragmentation of plastics. Increasing the normal loading applied during the abrasion process from 2 to 8 N linearly increased the number of generated plastic fragments by more than five times for pellets and more than three times for film. Photodegradation significantly enhanced the extent of MPs fragmentation. Moreover, the limitations of this study and the implications for agricultural soil health were discussed.

     
    more » « less
  4. Abstract Purpose . Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature. Methods . We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and Poisson’s ratios by means of digital image correlation (DIC). For each formulation, we derived the constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models under a radial pressure of 250 mmHg. Results . Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition. Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low strains ( μ 184  = 0.52–0.88 MPa, σ 184  = 15.90–16.54 MPa, ε 184  = 0.72–0.96). Conversely, Sylgard170 and DowsilEE-3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for arterial tissues ( μ 170  = 0.33–0.7 MPa σ 170  = 2.61–3.67 MPa, ε 170  = 0.69–0.81; μ dow = 0.02–0.09 MPa σ dow = 0.83–2.05 MPa, ε dow = 0.91–1.05). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18 MPa. Conclusion . Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al 2010), making these formulations suited for cylindrical laboratory models under physiological and supraphysiological loading. 
    more » « less
  5. In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and the atomic structure evolution at the GB being simultaneously retained, our main findings are: (i) the accumulation of tens of dislocations near the H-charged GB can induce a local internal stress as high as 3 GPa; (ii) the more dislocations piled up at the GB, the slower the H diffusion ahead of the slip–GB intersection; and (iii) H atoms diffuse fast behind the pileup tip, get trapped within the GB, and diffuse slowly ahead of the pileup tip. The CAC simulation-predicted local H diffusivity, Dpileup−tip, and local stresses, σ, are correlated with each other. We then consolidate such correlations into a mechanics model by considering the dislocation pileup as an Eshelby inclusion. These findings will provide researchers with opportunities to: (a) characterize the interplay between plasticity, H diffusion, and crack initiation underlying H-induced cracking (HIC); (b) develop mechanism-based constitutive rules to be used in diffusion–plasticity coupling models for understanding the interplay between mechanical and mass transport in materials at the continuum level; and (c) connect the atomistic deformation physics of polycrystalline materials with their performance in aqueous environments, which is currently difficult to achieve in experiments.

     
    more » « less