Conventional refractive microscope objective lenses have limited applicability to a range of imaging modalities due to the dispersive nature of their optical elements. Designing a conventional refractive microscope objective that provides well-corrected imaging over a broad spectral range can be challenging, if not impossible. In contrast, reflective optics are inherently achromatic, so a system composed entirely of reflective elements is free from chromatic aberrations and, as a result, can image over an ultra-wide spectral range with perfect color correction. This study explores the design space of unobscured high numerical aperture, all-reflective microscope objectives. In particular, using freeform optical elements we obviate the need for a center obscuration, rendering the objective’s modulation transfer function comparable to that of refractive lens systems of similar numerical aperture. We detail the design process of the reflective objective, from determining the design specifications to the system optimization and sensitivity analysis. The outcome is an all-reflective freeform microscope objective lens with a 0.65 numerical aperture that provides diffraction-limited imaging and is compatible with the geometric constraints of commercial microscope systems.
more »
« less
Freeform hyperspectral imager design in a CubeSat format
A freeform pushbroom hyperspectral imager design was investigated as a combination of a freeform reflective triplet imager and a freeform reflective triplet spectrometer used in double-pass. The design operates at about F/2 with a 15-degree cross-track field-of-view and a 30 mm entrance pupil diameter. The design process led to achieving a small volume of less than 2 liters that fits comfortably within a 3U CubeSat geometry, exemplifying the compactness of this hyperspectral imager. We report the freeform sag departures and maximum slopes of the freeform surfaces, as well as the manufacturing tolerances together with an evaluation of the system stray light, all of which highlight the feasibility of a design in this class to be manufactured. This design uniquely positions itself on the landscape of compact hyperspectral imagers.
more »
« less
- PAR ID:
- 10307892
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 29
- Issue:
- 22
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 35915
- Size(s):
- Article No. 35915
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
CubeSats are a type of miniaturized satellites that consist of 10×10×10 cm cubic units (1U), which is established as a standard by Jordi Puig-Suari and Robert Twiggs in 1999 to push low-cost educational and industrial space experimentation [1]. In recent years the CubeSat format has gained popularity for research and industrial purposes including Earth imaging, communication and technology demonstration. High performing optical systems such as spectrometers and imagers that can be contained in CubeSat format are also desired in many space missions. In this paper, a design study is conducted for a 3-mirror spectrometer based on the reflective triplet design form that is fully contained in 1U space. As shown in Fig. 1, the spectrometer consists of three mirrors and a plane grating serving as the aperture stop. Light from a slit enters the system and travels through the three mirrors to the grating where it is dispersed and reflected. The light then travels back through the system in reverse to the detector near the slit which results in a 2D image (or spectrum). To show the freeform advantage, we compared two designs of this spectrometer - one designed with freeform surfaces and the other with off-axis aspheres.more » « less
-
null (Ed.)The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems.more » « less
-
Reimaging telescopes have an accessible exit pupil that facilitates stray light mitigation and matching to auxiliary optical systems. Freeform surfaces present the opportunity for unobscured reflective systems to be folded into geometries that are otherwise impracticable with conventional surface types. It is critical, however, to understand the limitations of the enabled folding geometries and choose the one that best balances the optical performance and mechanical requirements. Here, we used the aberration theory of freeform surfaces to determine the aberration correction potential for using freeform surfaces in reimaging three-mirror telescopes and established a hierarchy for the different folding geometries without using optimization. We found that when using freeform optics, the ideal folding geometry had 9× better wavefront performance compared to the next best geometry. Within that ideal geometry, the system using freeform optics had 39% better wavefront performance compared to a system using off-axis asphere surfaces, thus quantifying one of the advantages of freeform optics in this design space.more » « less
An official website of the United States government
