Multiphoton microscopy has emerged as the primary imaging tool for studying the structural and functional dynamics of neural circuits in brain tissue, which is highly scattering to light. Recently, three-photon microscopy has enabled high-resolution fluorescence imaging of neurons in deeper brain areas that lie beyond the reach of conventional two-photon microscopy, which is typically limited to ~ 450 µm. Three-photon imaging of neuronal calcium signals, through the genetically-encoded calcium indicator GCaMP6, has been used to successfully record neuronal activity in deeper neocortical layers and parts of the hippocampus in rodents. Bulk-loading cells in deeper cortical layers with synthetic calcium indicators could providemore »
Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging
Wide-field calcium imaging is often used to measure brain dynamics in behaving mice. With a large field of view and a high sampling rate, wide-field imaging can monitor activity from several distant cortical areas simultaneously, revealing cortical interactions. Interpretation of wide-field images is complicated, however, by the absorption of light by hemoglobin, which can substantially affect the measured fluorescence. One approach to separating hemodynamics and calcium signals is to use multiwavelength backscatter recordings to measure light absorption by hemoglobin. Following this approach, we develop a spatially detailed regression-based method to estimate hemodynamics. This Spatial Model is based on a linear form of the Beer–Lambert relationship but is fit at every pixel in the image and does not rely on the estimation of physical parameters. In awake mice of three transgenic lines, the Spatial Model offers improved separation of hemodynamics and changes in GCaMP fluorescence. The improvement is pronounced near blood vessels and, in contrast with the Beer–Lambert equations, can remove vascular artifacts along the sagittal midline and in general permits more accurate fluorescence-based determination of neuronal activity across the cortex. NEW & NOTEWORTHY This paper addresses a well-known and strong source of contamination in wide-field calcium-imaging data: hemodynamics. To guide more »
- Award ID(s):
- 1630982
- Publication Date:
- NSF-PAR ID:
- 10309362
- Journal Name:
- Journal of Neurophysiology
- Volume:
- 123
- Issue:
- 1
- ISSN:
- 0022-3077
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
ABSTRACT This paper presents a detailed analysis of two giant Lyman-alpha (Ly α) arcs detected near galaxies at z = 3.038 and z = 3.754 lensed by the massive cluster MACS 1206−0847 (z = 0.44). The Ly α nebulae revealed in deep MUSE observations exhibit a double-peaked profile with a dominant red peak, indicating expansion/outflowing motions. One of the arcs stretches over 1 arcmin around the cluster Einstein radius, resolving the velocity field of the line-emitting gas on kpc scales around three star-forming galaxies of 0.3–$1.6\, L_*$ at z = 3.038. The second arc spans 15 arcsec in size, roughly centred around two low-mass Ly α emitters ofmore »
-
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising material because of its favorable electrical and mechanical properties, stability in ambient environments, and biocompatibility. It finds broad application in energy storage, flexible electronics, and bioelectronics. Additive manufacturing opens a plethora of new avenues to form and shape PEDOT:PSS, allowing for the rapid construction of customized geometries. However, there are difficulties in printing PEDOT:PSS while maintaining its attractive properties. A 3D printing method for PEDOT:PSS using a room temperature coagulation bath-based direct ink writing technique is reported. This technique enables fabrication of PEDOT:PSS into parts that are of high resolution and high conductivity, while maintainingmore »
-
In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, ourmore »
-
Ca2+ and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations within a single cell. This difficulty is largely due to the inability to measure multiplexed florescence signals in real time. To overcome this limitation, we have utilized both emission scan- andmore »