While a number of O-H and O-D vibrational lines have been observed for hydrogen and deuterium in β-Ga2O3, it has been commonly reported that there is no absorption with a component of the polarization E parallel to the [010], or b, axis. This experimental result has led to O-H defect structures that involve shifted configurations of a vacancy at the tetrahedrally coordinated Ga(1) site [VGa(1)] and have ruled out structures that involve a vacancy at the octahedrally coordinated Ga(2) site [VGa(2)], because these structures are predicted to show absorption for E//[010]. In this Letter, weak O-D lines at 2475 and 2493 cm−1 with a component of their polarization with E//[010] are reported for β-Ga2O3 that had been annealed in a D2 ambient. O-D defect structures involving an unshifted VGa(2) are proposed for these centers. An estimate is made that the concentration of VGa(2) in a Czochralski-grown sample is 2–3 orders of magnitude lower than that of VGa(1) from the intensities of the IR absorption lines.
more »
« less
Origin of the anisotropic Beer–Lambert law from dichroism and birefringence in β -Ga2O3
The anisotropic optical absorption edge of β-Ga2O3 follows a modified Beer–Lambert law having two effective absorption coefficients. The absorption coefficient of linearly polarized light reduces to the least absorbing direction beyond a critical penetration depth, which itself depends on polarization and wavelength. To understand this behavior, a Stokes vector analysis is performed to track the polarization state as a function of depth. The weakening of the absorption coefficient is associated with a gradual shift of linear polarization to the least absorbing crystallographic direction in the plane, which is along the a-exciton within the (010) plane or along the b-exciton in the (001) plane. We show that strong linear dichroism near the optical absorption edge causes this shift in β-Ga2O3, which arises from the anisotropy and spectral splitting of the physical absorbers, i.e., excitons. The linear polarization shift is accompanied by a variation in the ellipticity due to the birefringence of β-Ga2O3. Analysis of the phase relationship between the incoming electric field to that at a certain depth reveals the phase speed as an effective refractive index, which varies along different crystallographic directions. The critical penetration depth is shown to be correlated with the depth at which the ellipticity is maximal. Thus, the anisotropic Beer–Lambert law arises from the interplay of both the dichroic and birefringent properties of β-Ga2O3.
more »
« less
- PAR ID:
- 10542966
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 125
- Issue:
- 8
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors.more » « less
-
Wide-field calcium imaging is often used to measure brain dynamics in behaving mice. With a large field of view and a high sampling rate, wide-field imaging can monitor activity from several distant cortical areas simultaneously, revealing cortical interactions. Interpretation of wide-field images is complicated, however, by the absorption of light by hemoglobin, which can substantially affect the measured fluorescence. One approach to separating hemodynamics and calcium signals is to use multiwavelength backscatter recordings to measure light absorption by hemoglobin. Following this approach, we develop a spatially detailed regression-based method to estimate hemodynamics. This Spatial Model is based on a linear form of the Beer–Lambert relationship but is fit at every pixel in the image and does not rely on the estimation of physical parameters. In awake mice of three transgenic lines, the Spatial Model offers improved separation of hemodynamics and changes in GCaMP fluorescence. The improvement is pronounced near blood vessels and, in contrast with the Beer–Lambert equations, can remove vascular artifacts along the sagittal midline and in general permits more accurate fluorescence-based determination of neuronal activity across the cortex. NEW & NOTEWORTHY This paper addresses a well-known and strong source of contamination in wide-field calcium-imaging data: hemodynamics. To guide researchers toward the best method to separate calcium signals from hemodynamics, we compare the performance of several methods in three commonly used mouse lines and present a novel regression model that outperforms the other techniques we consider.more » « less
-
Understanding the thermal stability and degradation mechanism of β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) is crucial for their high-power electronics applications. This work examines the high temperature performance of the junctionless lateral β-Ga2O3 FinFET grown on a native β-Ga2O3 substrate, fabricated by metal-assisted chemical etching with Al2O3 gate oxide and Ti/Au gate metal. The thermal exposure effect on threshold voltage (Vth), subthreshold swing (SS), hysteresis, and specific on-resistance (Ron,sp), as a function of temperature up to 298 °C, is measured and analyzed. SS and Ron,sp increased with increasing temperatures, similar to the planar MOSFETs, while a more severe negative shift of Vth was observed for the high aspect-ratio FinFETs here. Despite employing a much thicker epilayer (∼2 μm) for the channel, the high temperature performance of Ion/Ioff ratios and SS of the FinFET in this work remains comparable to that of the planar β-Ga2O3 MOSFETs reported using epilayers ∼10–30× thinner. This work paves the way for further investigation into the stability and promise of β-Ga2O3 FinFETs compared to their planar counterparts.more » « less
-
In this work, we report on the anisotropic etching characteristics of β-Ga2O3 using triethylgallium (TEGa) performed in situ within an MOCVD chamber. At sufficiently high substrate temperatures, TEGa can act as a strong etchant for β-Ga2O3 utilizing the suboxide reaction between Ga and Ga2O3 [4 Ga(s) + Ga2O3 (s) → 3Ga2O (g)]. We observe that due to the monoclinic crystal structure of β-Ga2O3, TEGa etching on both (010) and (001) substrates is highly anisotropic in nature, in terms of both sidewall roughness and lateral etch rate. Smooth sidewalls are only obtained along crystal orientations that minimize sidewall surface energy. Utilizing this technique, we also demonstrate deep sub-micrometer fins with smooth sidewalls and high aspect ratios. Furthermore, we also demonstrate the damage-free nature of TEGa etching by fabricating Schottky diodes on the etched surface, which display no change in the net donor concentration.more » « less
An official website of the United States government

