skip to main content

Title: Learning Behavioral Soft Constraints from Demonstrations
Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? These scenarios force us to evaluate the trade-off between collective norms and our own personal objectives. To create effective AI-human teams, we must equip AI agents with a model of how humans make trade-offs in complex, constrained environments. These agents will be able to mirror human behavior or to draw human attention to situations where decision making could be improved. To this end, we propose a novel inverse reinforcement learning (IRL) method for learning implicit hard and soft constraints from demonstrations, enabling agents to quickly adapt to new settings. In addition, learning soft constraints over states, actions, and state features allows agents to transfer this knowledge to new domains that share similar aspects.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Workshop on Safe and Robust Control of Uncertain Systems at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021)
Sponsoring Org:
National Science Foundation
More Like this
  1. Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? In general, how should we account for and balance the ethical values, safety recommendations, and societal norms, when we are trying to achieve a certain objective? To enable effective AI-human collaboration, we must equip AI agents with a model of how humans make such trade-offs in environments where there is not only a goal to be reached, but there are also ethical constraints to be considered and to possibly align with. These ethical constraints could be both deontological rules on actions that should not be performed, or also consequentialist policies that recommend avoiding reaching certain states of the world. Our purpose is to build AI agents that can mimic human behavior in these ethically constrained decision environments, with a long term research goal to use AI to help humans in making better moral judgments and actions. To this end, we propose a computational approach where competing objectives and ethical constraints are orchestrated through a method that leverages a cognitive model of human decision making, called multi-alternative decision field theory (MDFT). Using MDFT, wemore »build an orchestrator, called MDFT-Orchestrator (MDFT-O), that is both general and flexible. We also show experimentally that MDFT-O both generates better decisions than using a heuristic that takes a weighted average of competing policies (WA-O), but also performs better in terms of mimicking human decisions as collected through Amazon Mechanical Turk (AMT). Our methodology is therefore able to faithfully model human decision in ethically constrained decision environments.« less
  2. Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.This paper appears in the special track on AI & Society.
  3. The human-robot interaction community has developed many methods for robots to navigate safely and socially alongside humans. However, experimental procedures to evaluate these works are usually constructed on a per-method basis. Such disparate evaluations make it difficult to compare the performance of such methods across the literature. To bridge this gap, we introduce SocNavBench , a simulation framework for evaluating social navigation algorithms. SocNavBench comprises a simulator with photo-realistic capabilities and curated social navigation scenarios grounded in real-world pedestrian data. We also provide an implementation of a suite of metrics to quantify the performance of navigation algorithms on these scenarios. Altogether, SocNavBench provides a test framework for evaluating disparate social navigation methods in a consistent and interpretable manner. To illustrate its use, we demonstrate testing three existing social navigation methods and a baseline method on SocNavBench , showing how the suite of metrics helps infer their performance trade-offs. Our code is open-source, allowing the addition of new scenarios and metrics by the community to help evolve SocNavBench to reflect advancements in our understanding of social navigation.
  4. Software applications that employ secure multi-party computation (MPC) can empower individuals and organizations to benefit from privacy-preserving data analyses when data sharing is encumbered by confidentiality concerns, legal constraints, or corporate policies. MPC is already being incorporated into software solutions in some domains; however, individual use cases do not fully convey the variety, extent, and complexity of the opportunities of MPC. This position paper articulates a role-based perspective that can provide some insight into how future research directions, infrastructure development and evaluation approaches, and deployment practices for MPC may evolve. Drawing on our own lessons from existing real-world deployments and the fundamental characteristics of MPC that make it a compelling technology, we propose a role-based conceptual framework for describing MPC deployment scenarios. Our framework acknowledges and leverages a novel assortment of roles that emerge from the fundamental ways in which MPC protocols support federation of functionalities and responsibilities. Defining these roles using the new opportunities for federation that MPC enables in turn can help identify and organize the capabilities, concerns, incentives, and trade-offs that affect the entities (software engineers, government regulators, corporate executives, end-users, and others) that participate in an MPC deployment scenario. This framework can not only guide themore »development of an ecosystem of modular and composable MPC tools, but can make explicit some of the opportunities that researchers and software engineers (and any organizations they form) have to differentiate and specialize the artifacts and services they choose to design, develop, and deploy. We demonstrate how this framework can be used to describe existing MPC deployment scenarios, how new opportunities in a scenario can be observed by disentangling roles inhabited by the involved parties, and how this can motivate the development of MPC libraries and software tools that specialize not by application domain but by role.« less
  5. With the growing industry applications of Artificial Intelligence (AI) systems, pre-trained models and APIs have emerged and greatly lowered the barrier of building AI-powered products. However, novice AI application designers often struggle to recognize the inherent algorithmic trade-offs and evaluate model fairness before making informed design decisions. In this study, we examined the Objective Revision Evaluation System (ORES), a machine learning (ML) API in Wikipedia used by the community to build anti-vandalism tools. We designed an interactive visualization system to communicate model threshold trade-offs and fairness in ORES. We evaluated our system by conducting 10 in-depth interviews with potential ORES application designers. We found that our system helped application designers who have limited ML backgrounds learn about in-context ML knowledge, recognize inherent value trade-offs, and make design decisions that aligned with their goals. By demonstrating our system in a real-world domain, this paper presents a novel visualization approach to facilitate greater accessibility and human agency in AI application design.