Urban environments pose significant challenges to pedestrian safety and mobility. This paper introduces a novel modular sensing framework for developing real-time, multimodal streetscape applications in smart cities. Prior urban sensing systems predominantly rely either on fixed data modalities or centralized data processing, resulting in limited flexibility, high latency, and superficial privacy protections. In contrast, our framework integrates diverse sensing modalities, including cameras, mobile IMU sensors, and wearables into a unified ecosystem leveraging edge-driven distributed analytics. The proposed modular architecture, supported by standardized APIs and message-driven communication, enables hyper-local sensing and scalable development of responsive pedestrian applications. A concrete application demonstrating multimodal pedestrian tracking is developed and evaluated. It is based on the cross-modal inference module, which fuses visual and mobile IMU sensor data to associate detected entities in the camera domain with their corresponding mobile device.We evaluate our framework’s performance in various urban sensing scenarios, demonstrating an online association accuracy of 75% with a latency of ≈39 milliseconds. Our results demonstrate significant potential for broader pedestrian safety and mobility scenarios in smart cities.
more »
« less
Harnessing sensing systems towards urban sustainability transformation
Abstract Recent years have seen a massive development of geospatial sensing systems informing the use of space. However, rarely do these sensing systems inform transformation towards urban sustainability. Drawing on four global urban case examples, we conceptualize how passive and active sensing systems should be harnessed to secure an inclusive, sustainable and resilient urban transformation. We derive principles for stakeholders highlighting the need for an iterative dialogue along a sensing loop, new modes of governance enabling direct feeding of sensed information, an account for data biases in the sensing processes and a commitment to high ethical standards, including open access data sharing.
more »
« less
- PAR ID:
- 10310208
- Date Published:
- Journal Name:
- npj Urban Sustainability
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2661-8001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human mobility modeling has many applications in location-based services, mobile networking, city management, and epidemiology. Previous sensing approaches for human mobility are mainly categorized into two types: stationary sensing systems (e.g., surveillance cameras and toll booths) and mobile sensing systems (e.g., smartphone apps and vehicle tracking devices). However, stationary sensing systems only provide mobility information of human in limited coverage (e.g., camera-equipped roads) and mobile sensing systems only capture a limited number of people (e.g., people using a particular smartphone app). In this work, we design a novel system Mohen to model human mobility with a heterogeneous sensing system. The key novelty of Mohen is to fundamentally extend the sensing coverage of a large-scale stationary sensing system with a small-scale sensing system. Based on the evaluation on data from real-world urban sensing systems, our system outperforms them by 35% and achieves a competitive result to an Oracle method.more » « less
-
Abstract Due to climate change and rapid urbanization, Urban Heat Island (UHI), featuring significantly higher temperature in metropolitan areas than surrounding areas, has caused negative impacts on urban communities. Temporal granularity is often limited in UHI studies based on satellite remote sensing data that typically has multi-day frequency coverage of a particular urban area. This low temporal frequency has restricted the development of models for predicting UHI. To resolve this limitation, this study has developed a cyber-based geographic information science and systems (cyberGIS) framework encompassing multiple machine learning models for predicting UHI with high-frequency urban sensor network data combined with remote sensing data focused on Chicago, Illinois, from 2018 to 2020. Enabled by rapid advances in urban sensor network technologies and high-performance computing, this framework is designed to predict UHI in Chicago with fine spatiotemporal granularity based on environmental data collected with the Array of Things (AoT) urban sensor network and Landsat-8 remote sensing imagery. Our computational experiments revealed that a random forest regression (RFR) model outperforms other models with the prediction accuracy of 0.45 degree Celsius in 2020 and 0.8 degree Celsius in 2018 and 2019 with mean absolute error as the evaluation metric. Humidity, distance to geographic center, and PM2.5concentration are identified as important factors contributing to the model performance. Furthermore, we estimate UHI in Chicago with 10-min temporal frequency and 1-km spatial resolution on the hottest day in 2018. It is demonstrated that the RFR model can accurately predict UHI at fine spatiotemporal scales with high-frequency urban sensor network data integrated with satellite remote sensing data.more » « less
-
Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multi-temporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values >0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available.more » « less
-
With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a fleet have been proposed to improve the urban efficiency, e.g., HD-live map, and traffic accident recovery. However, due to the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of vehicles' mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks as mobile sensors to sense urban phenomena, e.g., traffic, by using the equipped vehicular sensors, e.g., dash-cam, lidar, automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi fleet with 14 thousand vehicles; (ii) a bus fleet with 13 thousand vehicles; (iii) a truck fleet with 4 thousand vehicles. Further, we design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban sensing aspect based on the data from a regular vehicle (i.e., personal car) fleet with 11 thousand vehicles. The evaluation results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments covered by sensing vehicles) by 10% on average.more » « less
An official website of the United States government

