A bstract We study the fourpoint function of the lowestlying halfBPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory and its relation to the flatspace fourgraviton amplitude in type IIB superstring theory. We work in a large N expansion in which the complexified YangMills coupling τ is fixed. In this expansion, nonperturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the massdeformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the fourpoint correlator at separated points. In a normalization where the twopoint functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the fourpoint correlator are proportional to the nonholomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB Smatrix arising from R 4 and D 4 R 4 contact interactions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of nonholomorphic Eisenstein series with halfinteger index, which are manifestly SL(2 , ℤ) invariant.
more »
« less
Far beyond the planar limit in stronglycoupled $$ \mathcal{N} $$ = 4 SYM
A bstract When the SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills (SYM) theory with complexified gauge coupling τ is placed on a round foursphere and deformed by an $$ \mathcal{N} $$ N = 2preserving mass parameter m , its free energy F ( m, τ, $$ \overline{\tau} $$ τ ¯ ) can be computed exactly using supersymmetric localization. In this work, we derive a new exact relation between the fourth derivative $$ {\partial}_m^4F\left(m,\tau, \overline{\tau}\right)\left{{}_m}_{=0}\right. $$ ∂ m 4 F m τ τ ¯ m = 0 of the sphere free energy and the integrated stresstensor multiplet fourpoint function in the $$ \mathcal{N} $$ N = 4 SYM theory. We then apply this exact relation, along with various other constraints derived in previous work (coming from analytic bootstrap, the mixed derivative $$ {\partial}_{\tau }{\partial}_{\overline{\tau}}{\partial}_m^2F\left(m,\tau, \overline{\tau}\right)\left{{}_m}_{=0}\right. $$ ∂ τ ∂ τ ¯ ∂ m 2 F m τ τ ¯ m = 0 , and type IIB superstring theory scattering amplitudes) to determine various perturbative terms in the large N and large ’t Hooft coupling λ expansion of the $$ \mathcal{N} $$ N = 4 SYM correlator at separated points. In particular, we determine the leading large λ term in the $$ \mathcal{N} $$ N = 4 SYM correlation function at order 1 /N 8 . This is three orders beyond the planar limit.
more »
« less
 Award ID(s):
 1820651
 NSFPAR ID:
 10311713
 Date Published:
 Journal Name:
 Journal of High Energy Physics
 Volume:
 2021
 Issue:
 1
 ISSN:
 10298479
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


A bstract We study modular invariants arising in the fourpoint functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory, in the limit where N is taken to be large while the complexified YangMills coupling τ is held fixed. The specific fourpoint functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2 ∗ theory with respect to the squashing parameter b and mass parameter m , evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1 /N expansion, these fourth derivatives are modular invariant functions of ( τ, $$ \overline{\tau} $$ τ ¯ ). We present evidence that at halfinteger orders in 1 /N , these modular invariants are linear combinations of nonholomorphic Eisenstein series, while at integer orders in 1 /N , they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the lowenergy expansion of the fourgraviton amplitude in type IIB superstring theory in tendimensional flat space and have interesting implications for the structure of the analogous expansion in AdS 5 × S 5 .more » « less

A bstract We study Euclidean D3branes wrapping divisors D in CalabiYau orientifold compactifications of type IIB string theory. Witten’s counting of fermion zero modes in terms of the cohomology of the structure sheaf $$ {\mathcal{O}}_D $$ O D applies when D is smooth, but we argue that effective divisors of CalabiYau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf $$ {\mathcal{O}}_{\overline{D}} $$ O D ¯ of the normalization $$ \overline{D} $$ D ¯ of D . We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, $$ {h}_{+}^{\bullet}\left({\mathcal{O}}_{\overline{D}}\right)=\left(1,0,0\right) $$ h + • O D ¯ = 1 0 0 and $$ {h}_{}^{\bullet}\left({\mathcal{O}}_{\overline{D}}\right)=\left(0,0,0\right) $$ h − • O D ¯ = 0 0 0 give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infiniteorder monodromy groups Γ. We use the action of Γ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strongweak coupling dualities involving inversion of divisor volumes.more » « less

null (Ed.)A bstract We examine in detail the structure of the Regge limit of the (nonplanar) $$ \mathcal{N} $$ N = 4 SYM fourpoint amplitude. We begin by developing a basis of color factors C ik suitable for the Regge limit of the amplitude at any loop order, and then calculate explicitly the coefficients of the amplitude in that basis through threeloop order using the Regge limit of the full amplitude previously calculated by Henn and Mistlberger. We compute these coefficients exactly at one loop, through $$ \mathcal{O}\left({\upepsilon}^2\right) $$ O ϵ 2 at two loops, and through $$ \mathcal{O}\left({\upepsilon}^0\right) $$ O ϵ 0 at three loops, verifying that the IRdivergent pieces are consistent with (the Regge limit of) the expected infrared divergence structure, including a contribution from the threeloop correction to the dipole formula. We also verify consistency with the IRfinite NLL and NNLL predictions of CaronHuot et al. Finally we use these results to motivate the conjecture of an allorders relation between one of the coefficients and the Regge limit of the $$ \mathcal{N} $$ N = 8 supergravity fourpoint amplitude.more » « less

null (Ed.)A bstract We present a search for the dark photon A ′ in the B 0 → A ′ A ′ decays, where A ′ subsequently decays to e + e − , μ + μ − , and π + π − . The search is performed by analyzing 772 × 10 6 $$ B\overline{B} $$ B B ¯ events collected by the Belle detector at the KEKB e + e − energyasymmetric collider at the ϒ(4 S ) resonance. No signal is found in the dark photon mass range 0 . 01 GeV /c 2 ≤ m A ′ ≤ 2 . 62 GeV /c 2 , and we set upper limits of the branching fraction of B 0 → A ′ A ′ at the 90% confidence level. The products of branching fractions, $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {e}^{+}{e}^{}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → e + e − 2 and $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {\mu}^{+}{\mu}^{}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → μ + μ − 2 , have limits of the order of 10 − 8 depending on the A ′ mass. Furthermore, considering A ′ decay rate to each pair of charged particles, the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ are of the order of 10 − 8 –10 − 5 . From the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ , we obtain the Higgs portal coupling for each assumed dark photon and dark Higgs mass. The Higgs portal couplings are of the order of 10 − 2 –10 − 1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 40 MeV /c 2 and 10 − 1 –1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 3 GeV /c 2 .more » « less