skip to main content


Title: Utilizing Current Technologies to Foster Augmented On-line Learning
psychology, and cognition has progressed sufficiently that the technology exists to develop a mutually beneficial exchange of information between a human and an AI. Dubbed “AI Symbiosis,” this process enables positive feedback between humans and adaptive computer algorithms in which both human and AI would “learn” how to perform tasks more efficiently than either could alone. Several new technologies and inventions al-low a vast array of augmented input and/or output between humans and AI, in-cluding mental activity wirelessly operating computers, manipulation of targeted neurons with or without implants, non-invasive, surface-level implants the size of a coin transmitting real-time neural activity of senses, real-time video feed of human mental images, and estimation of thoughts and emotions. A research pro-ject is planned to study students’ divided attention when they are learning content in on-line environments. The research will target eye-tracking, click timing, and task performance data to determine the levels of impact divided attention has on student learning. We believe that this line of research will also inform best prac-tices in on-line instructional settings.  more » « less
Award ID(s):
1662487
NSF-PAR ID:
10312069
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Augmented Cognition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving our understanding of how humans perceive AI teammates is an important foundation for our general understanding of human-AI teams. Extending relevant work from cognitive science, we propose a framework based on item response theory for modeling these perceptions. We apply this framework to real-world experiments, in which each participant works alongside another person or an AI agent in a question-answering setting, repeatedly assessing their teammate’s performance. Using this experimental data, we demonstrate the use of our framework for testing research questions about people’s perceptions of both AI agents and other people. We contrast mental models of AI teammates with those of human teammates as we characterize the dimensionality of these mental models, their development over time, and the influence of the participants’ own self-perception. Our results indicate that people expect AI agents’ performance to be significantly better on average than the performance of other humans, with less variation across different types of problems. We conclude with a discussion of the implications of these findings for human-AI interaction. 
    more » « less
  2. We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables the simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time near-photo-realistic image rendering; a library of objects and environments, and routines for their customization; generative procedures for efficiently building classes of new environments; high-fidelity audio rendering; realistic physical interactions for a variety of material types, including cloths, liquid, and deformable objects; customizable avatars that embody AI agents; and support for human interactions with VR devices. TDW's API enables multiple agents to interact within a simulation and returns a range of sensor and physics data representing the state of the world. We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, physical dynamics predictions, multi-agent interactions, models that 'learn like a child', and attention studies in humans and neural networks. 
    more » « less
  3. We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time near-photo-realistic image rendering; a library of objects and environments, and routines for their customization; generative procedures for efficiently building classes of new environments; high-fidelity audio rendering; realistic physical interactions for a variety of material types, including cloths, liquid, and deformable objects; customizable agents that embody AI agents; and support for human interactions with VR devices. TDW's API enables multiple agents to interact within a simulation and returns a range of sensor and physics data representing the state of the world. We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, physical dynamics predictions, multi-agent interactions, models that learn like a child, and attention studies in humans and neural networks. 
    more » « less
  4. Although artificial intelligence has revolutionized data analysis, significantly less work has focused on using AI to improve scientific data collection. Past work in AI for data collection has typically assumed the objective function is well-defined by humans before starting an experiment; however, this is a poor fit for scientific domains where new discoveries and insights are made as data is being collected. In this paper we present a new framework to allow AI systems to work together with humans (e.g. scientists) to collect data more effectively in simple scientific domains. We present a novel algorithm, TESA, which seeks to achieve good performance by learning from past human behavior how to direct data to places that are likely to become scientifically interesting in the future. We analyze the problem theoretically, defining a novel notion of regret in this setting and showing that TESA is zero regret. Next, we show that TESA outperforms other related algorithms in simulations using real data drawn from three diverse domains (economics, mental health, and cognitive psychology). Finally, we run experiments with human subjects across these scientific domains to compare our iterative human-in-the-loop process to a (more standard) workflow in which information is communicated to the AI a priori. 
    more » « less
  5. null (Ed.)
    Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve to support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps us see the complexity of today’s classrooms and within this complexity, the opportunities for augmentation or “assistance to become important and even essential. An overarching design concept has emerged in the past 5 years in response to this complexity, the idea of intelligent augmentation for “orchestrating” classrooms (Dillenbourg, et al, 2013). As a metaphor, orchestration can suggest the need for a coordinated performance among many agents who are each playing different roles or voicing different ideas. Practically speaking, orchestration suggests that “intelligence augmentation” could help many smaller things go well, and in doing so, could enable the overall intention of the learning experience to succeed. Those smaller things could include helping the teacher stay aware of students or groups who need attention, supporting formation of groups or transitions from one activity to the next, facilitating productive social interactions in groups, suggesting learning resources that would support teamwork, and more. A recent panel of AI experts identified orchestration as an overarching concept that is an important focus for near-term research and development for intelligence augmentation (Roschelle, Lester & Fusco, 2020). Tackling this challenging area of collaborative learning could also be beneficial for advancing AI technologies overall. Building AI agents that better understand the social context of human activities has broad importance, as does designing AI agents that can appropriately interact within teamwork. Collaborative learning has trajectory over time, and designing AI systems that support teams not just with a short term recommendation or suggestion but in long-term developmental processes is important. Further, classrooms that are engaged in collaborative learning could become very interesting hybrid environments, with multiple human and AI agents present at once and addressing dual outcome goals of learning to collaborate and collaborating to learn; addressing a hybrid environment like this could lead to developing AI systems that more robustly help many types of realistic human activity. In conclusion, the opportunity to make a societal impact by attending to collaborative learning, the availability of growing science of computer-supported collaborative learning and the need to push new boundaries in AI together suggest collaborative learning as a challenge worth tackling in coming years. 
    more » « less