skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing for human–AI complementarity in K‐12 education
Abstract Recent work has explored how complementary strengths of humans and artificial intelligence (AI) systems might be productively combined. However, successful forms of human–AI partnership have rarely been demonstrated in real‐world settings. We present the iterative design and evaluation of Lumilo, smart glasses that help teachers help their students in AI‐supported classrooms by presenting real‐time analytics about students’ learning, metacognition, and behavior. Results from a field study conducted in K‐12 classrooms indicate that students learn more when teachers and AI tutors work together during class. We discuss implications of this research for the design of human–AI partnerships. We argue for more participatory approaches to research and design in this area, in which practitioners and other stakeholders are deeply, meaningfully involved throughout the process. Furthermore, we advocate for theory‐building and for principled approaches to the study of human–AI decision‐making in real‐world contexts.  more » « less
Award ID(s):
1822861
PAR ID:
10376345
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AI Magazine
Volume:
43
Issue:
2
ISSN:
0738-4602
Format(s):
Medium: X Size: p. 239-248
Size(s):
p. 239-248
Sponsoring Org:
National Science Foundation
More Like this
  1. As artificial intelligence (AI) increasingly enters K-12 classrooms, what do teachers and students see as the roles of human versus AI instruction, and how might educational AI (AIED) systems best be designed to support these complementary roles? We explore these questions through participatory design and needs validation studies with K-12 teachers and students. Using human-centered design methods rarely employed in AIED research, this work builds on prior findings to contribute: (1) an analysis of teacher and student feedback on 24 design concepts for systems that integrate human and AI instruction; and (2) participatory speed dating (PSD): a new variant of the speed dating design method, involving iterative concept generation and evaluation with multiple stakeholders. Using PSD, we found that teachers desire greater real-time support from AI tutors in identifying when students need human help, in evaluating the impacts of their own help-giving, and in managing student motivation. Meanwhile, students desire better mechanisms to signal help-need during class without losing face to peers, to receive emotional support from human rather than AI tutors, and to have greater agency over how their personal analytics are used. This work provides tools and insights to guide the design of more effective human–AI partnerships for K-12 education. 
    more » « less
  2. Abstract The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members. 
    more » « less
  3. Dynamically transitioning between individual and collaborative learning activities during a class session (i.e., in an un-planned way, as-the-need-arises) has advantages for students, but existing orchestration tools are not designed to support such transitions. This work reports findings from a technology probe study that explored alternative designs for classroom co-orchestration support for dynamically transitioning between individual and collaborative learning, focused on how control over the transitions should be divided or shared among teachers, students, and orchestration system. This study involved 1) a pilot in an authentic classroom scenario with AI support for individual and collaborative learning; and 2) design workshops and interviews with students and teachers. Findings from the study suggest the need for hybrid control between students, teachers, and AI systems over transitions as well as for adaptivity and/or adaptability for different classrooms, teachers, and students’ prior knowledge. This study is the first to explore human–AI control over dynamic transitions between individual and collaborative learning in actual classrooms. 
    more » « less
  4. AbstractRecent advances in generative artificial intelligence (AI) and multimodal learning analytics (MMLA) have allowed for new and creative ways of leveraging AI to support K12 students' collaborative learning in STEM+C domains. To date, there is little evidence of AI methods supporting students' collaboration in complex, open‐ended environments. AI systems are known to underperform humans in (1) interpreting students' emotions in learning contexts, (2) grasping the nuances of social interactions and (3) understanding domain‐specific information that was not well‐represented in the training data. As such, combined human and AI (ie, hybrid) approaches are needed to overcome the current limitations of AI systems. In this paper, we take a first step towards investigating how a human‐AI collaboration between teachers and researchers using an AI‐generated multimodal timeline can guide and support teachers' feedback while addressing students' STEM+C difficulties as they work collaboratively to build computational models and solve problems. In doing so, we present a framework characterizing the human component of our human‐AI partnership as a collaboration between teachers and researchers. To evaluate our approach, we present our timeline to a high school teacher and discuss the key insights gleaned from our discussions. Our case study analysis reveals the effectiveness of an iterative approach to using human‐AI collaboration to address students' STEM+C challenges: the teacher can use the AI‐generated timeline to guide formative feedback for students, and the researchers can leverage the teacher's feedback to help improve the multimodal timeline. Additionally, we characterize our findings with respect to two events of interest to the teacher: (1) when the students cross adifficulty threshold,and (2) thepoint of intervention, that is, when the teacher (or system) should intervene to provide effective feedback. It is important to note that the teacher explained that there should be a lag between (1) and (2) to give students a chance to resolve their own difficulties. Typically, such a lag is not implemented in computer‐based learning environments that provide feedback. Practitioner notesWhat is already known about this topicCollaborative, open‐ended learning environments enhance students' STEM+C conceptual understanding and practice, but they introduce additional complexities when students learn concepts spanning multiple domains.Recent advances in generative AI and MMLA allow for integrating multiple datastreams to derive holistic views of students' states, which can support more informed feedback mechanisms to address students' difficulties in complex STEM+C environments.Hybrid human‐AI approaches can help address collaborating students' STEM+C difficulties by combining the domain knowledge, emotional intelligence and social awareness of human experts with the general knowledge and efficiency of AI.What this paper addsWe extend a previous human‐AI collaboration framework using a hybrid intelligence approach to characterize the human component of the partnership as a researcher‐teacher partnership and present our approach as a teacher‐researcher‐AI collaboration.We adapt an AI‐generated multimodal timeline to actualize our human‐AI collaboration by pairing the timeline with videos of students encountering difficulties, engaging in active discussions with a high school teacher while watching the videos to discern the timeline's utility in the classroom.From our discussions with the teacher, we define two types ofinflection pointsto address students' STEM+C difficulties—thedifficulty thresholdand theintervention point—and discuss how thefeedback latency intervalseparating them can inform educator interventions.We discuss two ways in which our teacher‐researcher‐AI collaboration can help teachers support students encountering STEM+C difficulties: (1) teachers using the multimodal timeline to guide feedback for students, and (2) researchers using teachers' input to iteratively refine the multimodal timeline.Implications for practice and/or policyOur case study suggests that timeline gaps (ie, disengaged behaviour identified by off‐screen students, pauses in discourse and lulls in environment actions) are particularly important for identifying inflection points and formulating formative feedback.Human‐AI collaboration exists on a dynamic spectrum and requires varying degrees of human control and AI automation depending on the context of the learning task and students' work in the environment.Our analysis of this human‐AI collaboration using a multimodal timeline can be extended in the future to support students and teachers in additional ways, for example, designing pedagogical agents that interact directly with students, developing intervention and reflection tools for teachers, helping teachers craft daily lesson plans and aiding teachers and administrators in designing curricula. 
    more » « less
  5. AI is beginning to transform every aspect of society. With the dramatic increases in AI, K-12 students need to be prepared to understand AI. To succeed as the workers, creators, and innovators of the future, students must be introduced to core concepts of AI as early as elementary school. However, building a curriculum that introduces AI content to K-12 students present significant challenges, such as connecting to prior knowledge, and developing curricula that are meaningful for students and possible for teachers to teach. To lay the groundwork for elementary AI education, we conducted a qualitative study into the design of AI curricular approaches with elementary teachers and students. Interviews with elementary teachers and students suggests four design principles for creating an effective elementary AI curriculum to promote uptake by teachers. This example will present the co-designed curriculum with teachers (PRIMARYAI) and describe how these four elements were incorporated into real-world problem-based learning scenarios. 
    more » « less