Climate change is affecting mountain ecosystems by increasing vegetation coverage and altering meteorological conditions. These changes are likely to impact the timing and magnitude of dissolved organic matter (DOM) inputs to lakes from the surrounding catchment. We examined temporal dynamics of DOM using in situ optical sensors that measured DOM fluorescence (fDOM) through the ice-free season in five lakes with differing catchment characteristics. We also measured changes in lake level and compiled daily meteorological data from nearby weather stations. At a seasonal time scale, fDOM dynamics occurred in two phases. fDOM declined in the first phase, which lasted until late July – mid-August, and corresponded to a decline in lake level following spring snowmelt. This decline was more pronounced in lakes with more vegetated catchments. At a shorter time scale, fDOM increased following precipitation events with a 0- to 1-day lag. Rates of fDOM increase per centmetre change in lake level were greater in lakes with vegetated catchments. As climate change increases vegetation coverage, DOM will likely become more dynamic at daily and seasonal time scales and impact water transparency and productivity of mountain lakes.
more »
« less
Dissolved organic carbon as a driver of seasonal and multiyear phytoplankton assembly oscillations in a subtropical monomictic lake
Phytoplankton assembly dynamics in lakes are highly sensitive to variability in climate drivers and resulting physicochemical changes in lake water columns. As climate change increases the frequency of major precipitation events and droughts, many lakes experience increased inputs of colored dissolved organic carbon (CDOC) and nutrients. How these CDOC-related changes in resources, transparency, and thermal stability affect phytoplankton assemblages, succession, and resilience is understudied, particularly in subtropical lakes. Here, we used time series, multivariate, and trait-based functional redundancy analyses to elucidate the roles of phytoplankton in ecosystem resilience and determine potential drivers of assemblage shifts in a subtropical monomictic lake with fluctuating CDOC inputs (Lake Annie, Highlands County, Florida, USA). We found that phytoplankton assemblages and successional patterns differed between two dark-water states (late 2005–mid-2007, late 2012–2019) bracketing a clear-water state (mid-2007–late 2012), caused by shifting CDOC and nutrient concentrations associated with oscillating groundwater levels. Diatoms (Bacillariophyta), which were dominant during the two dark-water states, nearly disappeared and were replaced by synurophytes during the clear-water state. Assemblages had greater interannual consistency in the dark-water states, while mean functional redundancy decreased in the clear-water state. Seasonal phytoplankton successional changes were also more pronounced and synchronized with seasonal hydrologic shifts in the dark-water states. Multiyear assemblage shifts occurred more quickly in clear-to-dark than dark-to-clear state transitions, suggesting phytoplankton in dark-water states may be more resistant to state transitions or even contribute to dark-water state resilience via feedback loops.
more »
« less
- PAR ID:
- 10312407
- Date Published:
- Journal Name:
- Limnology and Oceanography
- ISSN:
- 0024-3590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A growing body of literature has highlighted the importance of phytoplankton-bacterial associations to marine and estuarine ecological and biogeochemical function, but their population linkages remain sparsely characterized within urban estuaries. Since many developed coastlines are heavily impacted by anthropogenic nutrient inputs, elucidating their phytoplankton-bacterial dynamics provides insight into nutrient cycling, productivity, and can help inform water quality management. This study compared surface (0.5 m depth) physical water quality, cell abundances of major phytoplankton taxa and bacteria, as well as concentrations of chlorophylla(chla) and dissolved organic matter (DOM) in the nitrogen (N)-enriched Western Long Island Sound (WLIS), USA, between mid-channel and shore sites (in 2020 and 2021). Shore bacterial and phytoplankton abundances as well as DOM concentrations (primarily dissolved organic N and carbon [DOC]), were significantly higher than mid-channel, especially during summer, indicative of terrestrial loading influencing microbial assemblages as well as N and C cycling. Abundances of key phytoplankton taxa were better indicators of bacterial abundances than chla, as bacterial abundances positively and significantly correlated with those of dinoflagellates, especially the most common generaProrocentrum(mid-channel, shore) andHeterocapsa(shore only), but not with diatoms. However, pennate diatom abundances negatively and significantly correlated with DOC concentrations in the mid-channel. Results highlight the impact of terrestrial inputs on WLIS microbial assemblage dynamics, presumably by favoring bacteria and dinoflagellate population coupling, as well as shed new ecological insight into how phytoplankton and bacterial communities respond to nutrient loadings in urban estuaries.more » « less
-
null (Ed.)Globally, many shallow lakes have shifted from a clear macrophyte-dominated state to a turbid phytoplankton-dominated state due to eutrophication. Such shifts are often accompanied by toxic cyanobacterial blooms, with specialized traits including buoyancy regulation and nitrogen fixation. Previous work has focused on how these traits contribute to cyanobacterial competitiveness. Yet, little is known on how these traits affect the value of nutrient loading thresholds of shallow lakes. These thresholds are defined as the nutrient loading at which lakes shift water quality state. Here, we used a modelling approach to estimate the effects of traits on nutrient loading thresholds. We incorporated cyanobacterial traits in the process-based ecosystem model PCLake+, known for its ability to determine nutrient loading thresholds. Four scenarios were simulated, including cyanobacteria without traits, with buoyancy regulation, with nitrogen fixation, and with both traits. Nutrient loading thresholds were obtained under N-limited, P-limited, and colimited conditions. Results show that cyanobacterial traits can impede lake restoration actions aimed at removing cyanobacterial blooms via nutrient loading reduction. However, these traits hardly affect the nutrient loading thresholds for clear lakes experiencing eutrophication. Our results provide references for nutrient loading thresholds and draw attention to cyanobacterial traits during the remediation of eutrophic water bodies.more » « less
-
In aquatic systems, microbes likely play critical roles in biogeochemical cycling and ecosystem processes, but much remains to be learned regarding microbial biogeography and ecology. The microbial ecology of mountain lakes is particularly understudied. We hypothesized that microbial distribution among lakes is shaped, in part, by aquatic plant communities and the biogeochemistry of the lake. Specifically, we investigated the associations of yellow water lilies ( Nuphar polysepala) with the biogeochemistry and microbial assemblages within mountain lakes at two scales: within a single lake and among lakes within a mountain range. We first compared the biogeochemistry of lakes without water lilies to those colonized to varying degrees by water lilies. Lakes with >10% of the surface occupied by water lilies had lower pH and higher dissolved organic carbon than those without water lilies and had a different microbial composition. Notably, cyanobacteria were negatively associated with water lily presence, a result consistent with the past observation that macrophytes outcompete phytoplankton and can suppress cyanobacterial and algal blooms. To examine the influence of macrophytes on microbial distribution within a lake, we characterized microbial assemblages present on abaxial and adaxial water lily leaf surfaces and in the water column. Microbial diversity and composition varied among all three habitats, with the highest diversity of microbes observed on the adaxial side of leaves. Overall, this study suggests that water lilies influence the biogeochemistry and microbiology of mountains lakes.more » « less
-
Abstract Limnological understanding of the role snow plays in under‐ice thermal dynamics is mainly based on studies of clear‐water lakes. Very little is known about the role snow plays in the thermal dynamics of dystrophic lakes. We conducted a whole lake experiment on a small, 8 m deep dystrophic bog lake in northern Wisconsin, where we removed all snowfall over two consecutive winters. Due to weather variability, only 1 year had predominantly black ice. Under these conditions, the lake rapidly cooled in early and mid‐winter, compared to snow covered conditions that insulated the lake from heat loss. The lake also rapidly gained heat in late winter resulting in isothermal conditions well in advance of ice‐off. These results show how water clarity modulates the influence of snow on under‐ice thermal dynamics, which is relevant to futures with snow droughts.more » « less
An official website of the United States government

