skip to main content


Title: Design and Pilot Evaluation of a Prototype Sensorized Trunk Exoskeleton
Trunk exoskeletons are wearable devices that support wearers during physically demanding tasks by reducing biomechanical loads and increasing stability. In this paper, we present a prototype sensorized passive trunk exoskeleton, which includes five motion processing units (3-axis accelerometers and gyroscopes with onboard digital processing), four one-axis flex sensors along the exoskeletal spinal column, and two one-axis force sensors for measuring the interaction force between the wearer and exoskeleton. A pilot evaluation of the exoskeleton was conducted with two wearers, who performed multiple everyday tasks (sitting on a chair and standing up, walking in a straight line, picking up a box with a straight back, picking up a box with a bent back, bending forward while standing, bending laterally while standing) while wearing the exoskeleton. Illustrative examples of the results are presented as graphs. Finally, potential applications of the sensorized exoskeleton as the basis for a semi-active exoskeleton design or for audio/haptic feedback to guide the wearer are discussed.  more » « less
Award ID(s):
2151465
NSF-PAR ID:
10313190
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Passive trunk exoskeletons support the human body with mechanical elements like springs and trunk compression, allowing them to guide motion and relieve the load on the spine. However, to provide appropriate support, elements of the exoskeleton (e.g., degree of compression) should be intelligently adapted to the current task. As it is not currently clear how adjusting different exoskeleton elements affects the wearer, this study preliminarily examines the effects of simultaneously adjusting both exoskeletal spinal column stiffness and trunk compression in a passive trunk exoskeleton. Six participants performed four dynamic tasks (walking, sit-to-stand, lifting a 20-lb box, lifting a 40-lb box) and experienced unexpected perturbations both without the exoskeleton and in six exoskeleton configurations corresponding to two compression levels and three stiffness levels. While results are preliminary due to the small sample size and relatively small increases in stiffness, they indicate that both compression and stiffness may affect kinematics and electromyography, that the effects may differ between activities, and that there may be interaction effects between stiffness and compression. As the next step, we will conduct a larger study with the same protocol more participants and larger stiffness increases to systematically evaluate the effects of different exoskeleton characteristics on the wearer.Clinical Relevance- Trunk exoskeletons can support wearers during a variety of different tasks, but their configuration may need to be intelligently adjusted to provide appropriate support. This pilot study provides information about the effects of exoskeleton back stiffness and trunk compression on the wearer, which can be used as a basis for more effective device design and usage. 
    more » « less
  2. We explored the feasibility of using biomechanical simulations to predict altered spinal forces resulting from wearing a back-support exoskeleton (BSE) during repetitive lifting tasks. Twenty (10M, 10F) young, healthy participants completed repetitive lifting task, while wearing a BSE (‘with EXO’) and without wearing a BSE (‘without EXO’). Spinal forces were estimated by applying the BSE torque profile to body kinematics measured in ‘with EXO’ condition, while spinal forces were simulated by applying the same torque profile to body kinematics measured in ‘without EXO’ condition. Simulated compression force was higher than estimated compression force, probably due to lower trunk flexion angle in ‘without EXO’ condition. Such differences were larger among women than among men. However, simulated shear force was comparable with estimated shear force. Future works further need to compare simulated and estimated spinal forces for different BSEs (e.g., soft BSE), asymmetric lifting tasks, and different age group.

     
    more » « less
  3. Exoskeleton robots are capable of safe torque- controlled interactions with a wearer while moving their limbs through pre-defined trajectories. However, affecting and assist- ing the wearer’s movements while incorporating their inputs (effort and movements) effectively during an interaction re- mains an open problem due to the complex and variable nature of human motion. In this paper, we present a control algorithm that leverages task-specific movement behaviors to control robot torques during unstructured interactions by implementing a force field that imposes a desired joint angle coordination behavior. This control law, built by using principal component analysis (PCA), is implemented and tested with the Harmony exoskeleton. We show that the proposed control law is versatile enough to allow for the imposition of different coordination behaviors with varying levels of impedance stiffness. We also test the feasibility of our method for unstructured human-robot interaction. Specifically, we demonstrate that participants in a human-subject experiment are able to effectively perform reaching tasks while the exoskeleton imposes the desired joint coordination under different movement speeds and interaction modes. Survey results further suggest that the proposed control law may offer a reduction in cognitive or motor effort. This control law opens up the possibility of using the exoskeleton for training the participating in accomplishing complex m 
    more » « less
  4. Detection of the user’s walking is a critical part of exoskeleton technology for the full automation of smooth and seamless assistance during movement transitions. Researchers have taken several approaches in developing a walk detection system by using different kinds of sensors; however, only a few solutions currently exist which can detect these transitions using only the sensors embedded on a robotic hip exoskeleton (i.e., hip encoders and a trunk IMU), which is a critical consideration for implementing these systems in-the-loop of a hip exoskeleton controller. As a solution, we explored and developed two walk detection models that implemented a finite state machine as the models switched between walking and standing states using two transition conditions: stand-to-walk and walk-to-stand. One of our models dynamically detected the user’s gait cycle using two hip encoders and an IMU; the other model only used the two hip encoders. Our models were developed using a publicly available dataset and were validated online using a wearable sensor suite that contains sensors commonly embedded on robotic hip exoskeletons. The two models were then compared with a foot contact estimation method, which served as a baseline for evaluating our models. The results of our online experiments validated the performance of our models, resulting in 274 ms and 507 ms delay time when using the HIP+IMU and HIP ONLY model, respectively. Therefore, the walk detection models established in our study achieve reliable performance under multiple locomotive contexts without the need for manual tuning or sensors additional to those commonly implemented on robotic hip exoskeletons. 
    more » « less
  5. We investigated how novices’ perception of exoskeleton usefulness changes with different types of exposure to an exoskeleton; and when the biomechanical benefits and limitations of potential exoskeleton use are presented to them. Twenty young, healthy participants completed this study. The three types of informational exposures to a back-support exoskeleton (BSE) were: (1) Information-based, (2) Virtual Reality (VR)-based, and (3) hands-on experience (lifting a box using the BSE), where users virtually and physically completed various lifting/lowering tasks set at shoulder, waist, and ankle heights in symmetric and asymmetric positions. After every trial in each exposure, perceived usefulness was obtained. Overall, perceived usefulness ratings generally varied with major task variables (load, lift height, and trunk angle). The VR-based exposure appeared to clarify the specific circumstances under which the BSE was perceived to be useful and reduced extreme biases (positive or negative) that individuals may have developed prior to trying on a BSE.

     
    more » « less