skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Counting mod n in pseudofinite fields
We show that in an ultraproduct of finite fields, the mod-n nonstandard size of definable sets varies definably in families. Moreover, if K is any pseudofinite field, then one can assign "nonstandard sizes mod n" to definable sets in K. As n varies, these nonstandard sizes assemble into a definable strong Euler characteristic on K, taking values in the profinite completion hat(Z) of the integers. The strong Euler characteristic is not canonical, but depends on the choice of a nonstandard Frobenius. When Abs(K) is finite, the Euler characteristic has some funny properties for two choices of the nonstandard Frobenius. Additionally, we show that the theory of finite fields remains decidable when first-order logic is expanded with parity quantifiers. However, the proof depends on a computational algebraic geometry statement whose proof is deferred to a later paper.  more » « less
Award ID(s):
1803120
PAR ID:
10313374
Author(s) / Creator(s):
Date Published:
Journal Name:
Israel Journal of Mathematics
ISSN:
0021-2172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let $$K$$ be an algebraically closed field of prime characteristic $$p$$ , let $$X$$ be a semiabelian variety defined over a finite subfield of $$K$$ , let $$\unicode[STIX]{x1D6F7}:X\longrightarrow X$$ be a regular self-map defined over $$K$$ , let $$V\subset X$$ be a subvariety defined over $$K$$ , and let $$\unicode[STIX]{x1D6FC}\in X(K)$$ . The dynamical Mordell–Lang conjecture in characteristic $$p$$ predicts that the set $$S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$$ is a union of finitely many arithmetic progressions, along with finitely many $$p$$ -sets, which are sets of the form $$\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$$ for some $$m\in \mathbb{N}$$ , some rational numbers $$c_{i}$$ and some non-negative integers $$k_{i}$$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $$X$$ is an algebraic torus, we can prove the conjecture in two cases: either when $$\dim (V)\leqslant 2$$ , or when no iterate of $$\unicode[STIX]{x1D6F7}$$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $$X$$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction. 
    more » « less
  2. Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p ,  q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups. 
    more » « less
  3. Abstract We determine the mod $$p$$ cohomological invariants for several affine group schemes $$G$$ in characteristic $$p$$. These are invariants of $$G$$-torsors with values in étale motivic cohomology, or equivalently in Kato’s version of Galois cohomology based on differential forms. In particular, we find the mod 2 cohomological invariants for the symmetric groups and the orthogonal groups in characteristic 2, which Serre computed in characteristic not 2. We also determine all operations on the mod $$p$$ étale motivic cohomology of fields, extending Vial’s computation of the operations on the mod $$p$$ Milnor K-theory of fields. 
    more » « less
  4. abstract: In the early 1940s, P. A. Smith showed that if a finite $$p$$-group $$G$$ acts on a finite dimensional complex $$X$$ that is mod $$p$$ acyclic, then its space of fixed points, $X^G$, will also be mod $$p$$ acyclic. In their recent study of the Balmer spectrum of equivariant stable homotopy theory, Balmer and Sanders were led to study a question that can be shown to be equivalent to the following: if a $$G$$-space $$X$$ is a equivariant homotopy retract of the $$p$$-localization of a based finite $$G$$-C.W. complex, given $H 
    more » « less
  5. An excellent ring of prime characteristic for which the Frobenius map is pure is also Frobenius split in many commonly occurring situations in positive characteristic commutative algebra and algebraic geometry. However, using a fundamental construction from rigid geometry, we show that excellent $$F$$-pure rings of prime characteristic are not Frobenius split in general, even for Euclidean domains. Our construction uses the existence of a complete non-Archimedean field $$k$$ of characteristic $$p$$ with no nonzero continuous $$k$$-linear maps $$k^{1/p} \to k$$. An explicit example of such a field is given based on ideas of Gabber, and may be of independent interest. Our examples settle a long-standing open question in the theory of $$F$$-singularities whose origin can be traced back to when Hochster and Roberts introduced the notion of $$F$$-purity. The excellent Euclidean domains we construct also admit no nonzero $$R$$-linear maps $$R^{1/p} \rightarrow R$$. These are the first examples that illustrate that $$F$$-purity and Frobenius splitting define different classes of singularities for excellent domains, and are also the first examples of excellent domains with no nonzero $$p^{-1}$$-linear maps. The latter is particularly interesting from the perspective of the theory of test ideals. 
    more » « less