The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity.
more »
« less
Quantum Fan-out: Circuit Optimizations and Technology Modeling
Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through global interactions. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out.Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7–24% reduction in error.
more »
« less
- PAR ID:
- 10313465
- Date Published:
- Journal Name:
- 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Trapped-Ion (TI) technology offers potential breakthroughs for Noisy Intermediate Scale Quantum (NISQ) computing. TI qubits offer extended coherence times and high gate fidelity, making them appealing for large-scale NISQ computers. Constructing such computers demands a distributed architecture connecting Quantum Charge Coupled Devices (QCCDs) via quantum matter-links and photonic switches. However, current distributed TI NISQ computers face hardware and system challenges. Entangling qubits across a photonic switch introduces significant latency, while existing compilers generate suboptimal mappings due to their unawareness of the interconnection topology. In this paper, we introduce TITAN, a large-scale distributed TI NISQ computer, which employs an innovative photonic interconnection design to reduce entanglement latency and an advanced partitioning and mapping algorithm to optimize matter-link communications. Our evaluations show that TITAN greatly enhances quantum application performance by 56.6% and fidelity by 19.7% compared to existing systems.more » « less
-
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.more » « less
-
Quantum algorithms will likely play a key role in future high-performance-computing (HPC) environments. These algorithms are typically expressed as quantum circuits composed of arbitrary gates or as unitary matrices. Executing these on physical devices, however, requires translation to device-compatible circuits, in a process called quantum compilation or circuit synthesis, since these devices support a limited number of native gates. Moreover, these devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits. Furthermore, current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints. They are vulnerable to errors during gate application and their short decoherence times lead to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to minimize gates and execution times. The problem of synthesizing device-compatible circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based synthesis techniques, which are able to produce approximations of the desired algorithm, while optimizing depth and gate-count. In this work, we investigate using genetic algorithms (GA)—a proven gradient-free optimization technique based on natural selection—for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality in our proposed method.more » « less
-
Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.more » « less
An official website of the United States government

