skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ocean warming and accelerating Southern Ocean zonal flow
Award ID(s):
1934363 1934392 1936222 2311170
PAR ID:
10313519
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Climate Change
Volume:
11
Issue:
12
ISSN:
1758-678X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Global- and basin-scale ocean reanalyses are becoming easily accessible and are utilized widely to study the Southern Ocean. However, such ocean reanalyses are optimized to achieve the best model–data agreement for their entire model domains and their ability to simulate the Southern Ocean requires investigation. Here, we compare several ocean reanalyses (ECCOv4r5, ECCO LLC270, B-SOSE, and GECCO3) based on the Massachusetts Institute of Technology General Circulation Model (MITgcm) for the Southern Ocean. For the open ocean, the simulated time-mean hydrography and ocean circulation are similar to observations. The MITgcm-based ocean reanalyses show Antarctic Circumpolar Current (ACC) levels measuring approximately 149 ± 11 Sv. The simulated 2 °C isotherms are located in positions similar to the ACC and roughly represent the southern extent of the current. Simulated Weddell Gyre and Ross Gyre strengths are 51 ± 11 and 25 ± 8 Sv, respectively, which is consistent with observation-based estimates. However, our evaluation finds that the time evolution of the Southern Ocean is not well simulated in these ocean reanalyses. While observations showed little change in open-ocean properties in the Weddell and Ross gyres, all simulations showed larger trends, most of which are excessive warming. For the continental shelf region, all reanalyses are unable to reproduce observed hydrographic features, suggesting that the simulated physics determining on-shelf hydrography and circulation is not well represented. Nevertheless, ocean reanalyses are valuable resources and can be used for generating ocean lateral boundary conditions for regional high-resolution simulations. We recommend that future users of these ocean reanalyses pay extra attention if their studies target open-ocean Southern Ocean temporal changes or on-shelf processes. 
    more » « less
  2. Abstract The Miocene (∼23–5 Ma) experienced substantial paleogeographic changes, including the shoaling of the Panama Seaway and closure of the Tethys Seaway, which altered exchange pathways between the Pacific and Atlantic Oceans. Changes in continental configuration and topography likely also influenced global wind patterns. Here, we investigate how these changes affected surface wind‐driven gyre circulation and interbasin volume transport using 14 fully coupled climate model simulations of the early and middle Miocene. The North and South Atlantic gyres, along with the South Pacific gyre, are weaker in the Miocene simulations compared to pre‐industrial (PI), while the North Pacific gyres are stronger. These changes largely follow the wind stress curl and basin width changes. Westward flow through the Panama Seaway occurs only in early Miocene simulations when the Tethys Seaway is open and transports are strongly westward. As the Tethys transport declines, flow across the Panama Seaway gradually reverses from westward (into the Pacific) to eastward (into the Atlantic). In simulations with a closed Tethys Seaway, the Panama transport is consistently eastward. The Southern Hemisphere westerlies are weaker than PI in all simulations, contributing to a reduced Antarctic Circumpolar Current (ACC) in 11 of the 14 cases. In the remaining three, a stronger ACC is simulated, likely due to a combination of enhanced meridional density gradients and model‐dependent sensitivities. These findings highlight how changes in Miocene seaways and wind patterns reshaped ocean circulation, influencing interbasin exchange, thermohaline properties, and global climate. 
    more » « less