Viscoelastic shells subjected to a pressure loading exhibit rich and complex time-dependent responses. Here we focus on the phenomenon of pseudo-bistability, i.e. a viscoelastic shell can stay inverted when pressure is removed, and snap to its natural shape after a delay time. We model and explain the mechanism of pseudo-bistability with a viscoelastic shell model. It combines the small strain, moderate rotation shell theory with the standard linear solid as the viscoelastic constitutive law, and is applicable to shells with arbitrary axisymmetric shapes. As a case study, we investigate the pseudo-bistable behaviour of viscoelastic ellipsoidal shells. Using the proposed model, we successfully predict buckling of a viscoelastic ellipsoidal shell into its inverted configuration when subjected to an instantaneous pressure, creeping when the pressure is held, staying inverted after the pressure is removed, and eventually snapping back after a delay time. The stability transition of the shell from a monostable, temporarily bistable and eventually back to the monostable state is captured by examining the evolution of the instantaneous pressure–volume change relation at different time of the holding and releasing process. A systematic parametric study is conducted to investigate the effect of geometry, viscoelastic properties and loading history on the pseudo-bistable behaviour. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'. 
                        more » 
                        « less   
                    
                            
                            Delayed buckling of spherical shells due to viscoelastic knockdown of the critical load
                        
                    
    
            We performed dynamic pressure buckling experiments on defect-seeded spherical shells made of a common silicone elastomer. Unlike in quasi-static experiments, shells buckled at ostensibly subcritical pressures, i.e. below the experimentally determined critical load at which buckling occurs elastically, often following a significant delay period from the time of load application. While emphasizing the close connections to elastic shell buckling, we rely on viscoelasticity to explain our observations. In particular, we demonstrate that the lower critical load may be determined from the material properties, which is rationalized by a simple analogy to elastic spherical shell buckling. We then introduce a model centred on empirical quantities to show that viscoelastic creep deformation lowers the critical load in the same predictable, quantifiable way that a growing defect would in an elastic shell. This allows us to capture how both the deflection at instability and the time delay depend on the applied pressure, material properties and defect geometry. These quantities are straightforward to measure in experiments. Thus, our work not only provides intuition for viscoelastic behaviour from an elastic shell buckling perspective but also offers an accessible pathway to introduce tunable, time-controlled actuation to existing mechanical actuators, e.g. pneumatic grippers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1824882
- PAR ID:
- 10314064
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 477
- Issue:
- 2253
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We propose and investigate a minimal mechanism that makes use of differential swelling to modify the critical buckling conditions of elastic bilayer shells, as measured by the knockdown factor. Our shells contain an engineered defect at the north pole and are made of two layers of different crosslinked polymers that exchange free molecular chains. Depending on the size of the defect and the extent of swelling, we can observe either a decreasing or increasing knockdown factor. FEM simulations are performed using a reduced model for the swelling process to aid us in rationalizing the underlying mechanism, providing a qualitative agreement with experiments. We believe that the working principle of our mechanism can be extended to bimetallic shells undergoing variations in temperature and to shells made of pH-responsive gels, where the change in knockdown factor could be changed dynamically.more » « less
- 
            Here, we report the closure resistance of a soft-material bilayer orifice increases against external pressure, along with ruga-phase evolution, in contrast to the conventional predictions of the matrix-free cylindrical-shell buckling pressure. Experiments demonstrate that the generic soft-material orifice creases in a threefold symmetry at a limit-load pressure of p / μ ≈ 1.20, where μ is the shear modulus. Once the creasing initiates, the triple crease wings gradually grow as the pressure increases until the orifice completely closes at p / μ ≈ 3.0. By contrast, a stiff-surface bilayer orifice initially wrinkles with a multifold symmetry mode and subsequently develops ruga-phase evolution, progressively reducing the orifice cross-sectional area as pressure increases. The buckling-initiation mode is determined by the layer's thickness and stiffness, and the pressure by two types of the layer's instability modes—the surface-layer-wrinkling mode for a compliant and the ring-buckling mode for a stiff layer. The ring-buckling mode tends to set the twofold symmetry for the entire post-buckling closure process, while the high-frequency surface-layer-wrinkling mode evolves with successive symmetry breaking to a final closure configuration of two- or threefold symmetry. Finally, we found that the threefold symmetry mode for the entire closure process provides the orifice's strongest closure resistance, and human saphenous veins remarkably follow this threefold symmetry ruga evolution pathway.more » « less
- 
            Encapsulated microbubbles (EMBs) are widely used to enhance contrast in ultrasound sonography and are finding increasing use in biomedical therapies such as drug/gene delivery and tissue ablation. EMBs consist of a gas core surrounded by a stabilizing shell made of various materials, including polymers, lipids and proteins. We propose a novel model for a spherical EMB that utilizes a statistically-based continuum theory based on transient networks to simulate the encapsulating material. The use of transient network theory provides a general framework that allows a variety of viscoelastic shell materials to be modeled, including purely elastic solids or viscous fluids. This approach permits macroscopic continuum quantities – such as stress, elastic energy and entropy – to be calculated locally based on the network configuration at a given location. The model requires a minimum number of parameters that include the concentration of network elements, and the rates of attachment and detachment of the elements to and from the network. Using measured properties for a phospholipid bilayer, the model closely reproduces the experimentally-measured radial response of an ultrasonically-driven, lipid-coated microbubble. The model can be readily extended to large nonspherical EMB deformations, which are important in many biomedical applications.more » « less
- 
            Abstract Highly tunable dry adhesion has practical ramifications in robotic manipulation. While grippers based on mechanical interlocking and suction are adopted in various industries, soft grippers that can handle small and delicate objects reliably are yet to be invented. In this paper, it is reported that the presence of an adhesive substrate against a negatively pressurized soft hemispherical shell can significantly delay buckling of the shell. The net adhesion strength of such a depressurized shell can reach 60 times that of an open shell without any pressure difference. Simultaneous measurements of internal pressure, mechanical tension, contact area, and approach distance agree well with a semi‐analytical solid‐mechanics model. Introduction of defects at the polar region of the shells does not affect adhesion under the depressurized condition but significantly reduces adhesion under no pressure, leading to even higher tunability (almost infinity). The enhanced adhesion of a depressurized shell is found to be a combined effect of dry adhesion and suction. These shell grippers are shown to be effective in the universal manipulation of various objects with wide ranges of weight, shape, surface roughness, and mechanical compliance. The proposed depressurized soft shells provide a promising robotic gripping platform for industrial adoption.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    