Abstract During the summer, the Midwest United States, which covers the main US corn belt, has a net loss of surface water as evapotranspiration exceeds precipitation. The net moisture gain into the atmosphere is transported out of the region to northern high latitudes through transient eddy moisture fluxes. How this process may change in the future is not entirely clear despite the fact that the corn belt region is responsible for a large portion of the global supply of corn and soybeans. We find that increased CO2 and the associated warming increases evapotranspiration. while precipitation reduces in the region leading to further reduction in precipitation minus evaporation (P-E) in the future. At the same time, the poleward transient moisture flux increases leading to enhanced atmospheric moistures export from the corn belt region. However, storm track intensity is generally weakened in the summer due to reduced north-south temperature gradient associated with amplified warming in the midlatitudes. The intensified transient eddy moisture transport as storm track weakens can be reconciled by the stronger mean moisture gradient in the future. This is found to be caused by the climatological low-level jet transporting more moisture into the Great Plains region due to the thermodynamic mechanism under warmer conditions. Our results, for the first time, show that in the future, the US Midwest corn belt will experience more hydrological stress due to intensified transient eddy moisture export leading to drier soils in the region.
more »
« less
Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt
Abstract The response of highly productive croplands at northern mid-latitudes to climate change is a primary source of uncertainty in the global carbon cycle, and a concern for future food production. We present a decadal time series (2007 to 2019) of hourly CO 2 concentration measured at a very tall tower in the United States Corn Belt. Analyses of this record, with other long-term data in the region, reveal that warming has had a positive impact on net CO 2 uptake during the early crop growth stage, but has reduced net CO 2 uptake in both croplands and natural ecosystems during the peak growing season. Future increase in summer temperature is projected to reduce annual CO 2 sequestration in the Corn Belt by 10–20%. These findings highlight the dynamic control of warming on cropland CO 2 exchange and crop yields and challenge the paradigm that warming will continue to favor CO 2 sequestration in northern mid-latitude ecosystems.
more »
« less
- Award ID(s):
- 1640337
- PAR ID:
- 10314260
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes the ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) vs. conventional tillage (CT). We established replicated NT and CT plots in three CRP fields planted to continuous corn, switchgrass, or restored prairie. For the 2 yr following an initial soybean year in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and CO2emissions by 20% compared with CT conversion. Differences were higher in Year 1 than in Year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after Year 1. In all fields net CO2emissions (as measured by eddy covariance) were positive for the first 2 yr following CT establishment, but following NT establishment net CO2emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared with CT (−6.01 Mg CO2e ha−1 yr−1for NT vs. −0.25 Mg CO2e ha−1 yr−1for CT, on average). We also found that Intergovernmental Panel on Climate Change estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops to reduce C debt and maximize climate benefits.more » « less
-
Croplands have been the focus of substantial investigation due to their considerable potential for sequestering carbon. Understanding the potential for soil organic carbon (SOC) sequestration and necessary management strategies will be enabled with accurate process‐based models. Accurately representing crop growth and agricultural practices will be critical for realistic SOC modeling. The MEMS 2 model incorporates a current understanding of SOC formation and stabilization, measurable SOC pools, and deep SOC dynamics and is seen as a highly promising tool to inform management intervention for SOC sequestration. Thus far, MEMS 2 has been developed to represent grasslands. In this study, we further developed MEMS 2 to model annual grain crops and common agricultural practices, such as irrigation, fertilization, harvesting, and tillage. Using four Ameriflux sites, we demonstrated an accurate simulation of crop growth and development. Model performance was strong for simulating aboveground biomass (index of agreement [d] range of 0.89–0.98) and green leaf area index (dfrom 0.90 to 0.96) across corn, soybean, and winter wheat. Good agreement with observations was also achieved for net ecosystem CO2exchange (dfrom 0.90 to 0.96), evapotranspiration (dfrom 0.91 to 0.94), and soil temperature (dof 0.96), while discrepancy with the available soil water content data remain (dfrom 0.14 to 0.81 at four depths to 100 cm). While we will continue model testing and improvement, MEMS 2 (version 2.14) has now demonstrated its ability to effectively simulate the growth of common grain crops and practices.more » « less
-
Abstract Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.more » « less
-
Abstract Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources.more » « less
An official website of the United States government

