skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal
A grand challenge facing society is climate change caused mainly by rising CO 2 concentration in Earth’s atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO 2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO 2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO 2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.  more » « less
Award ID(s):
1833402
PAR ID:
10314418
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioDesign Research
Volume:
2021
ISSN:
2693-1257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required. 
    more » « less
  2. Abstract To achieve net zero carbon emissions by mid-century, the United States may need to rely on carbon dioxide removal (CDR) to offset emissions from difficult-to-decarbonize sectors and/or shortfalls in near-term mitigation efforts. CDR can be delivered using many approaches with different requirements for land, water, geologic carbon storage capacity, energy, and other resources. The availability of these resources varies by region in the U.S. suggesting that CDR deployment will be uneven across the country. Using the global change analysis model for the United States (GCAM-USA), we modeled six classes of CDR and explored their potential using four scenarios: a scenario where all the CDR pathways are available (Full Portfolio), a scenario with restricted carbon capture and storage (Low CCS), a scenario where the availability of bio-based CDR options is limited (Low Bio), and a scenario with constraints on enhanced rock weathering (ERW) capabilities (Low ERW). We find that by employing a diverse set of CDR approaches, the U.S. could remove between 1 and 1.9 GtCO2/yr by midcentury. In the Full Portfolio scenario, direct air carbon capture and storage (DACCS) predominates, delivering approximately 50% of CO2removal, with bioenergy with carbon capture and storage contributing 25%, and ERW delivering 11.5%. Texas and the agricultural Midwest lead in CDR deployment due to their abundant agricultural land and geological storage availability. In the Low CCS scenario, reliance on DACCS decreases, easing pressure on energy systems but increasing pressure on the land. In all cases CDR deployment was found to drive important impacts on energy, land, or materials supply chains (to supply ERW, for example) and these effects were generally more pronounced when fewer CDR technologies were available. 
    more » « less
  3. As climate mitigation efforts lag, dependence on anthropogenic CO2removal increases. Enhanced rock weathering (ERW) is a rapidly growing CO2removal approach. In terrestrial ERW, crushed rocks are spread on land where they react with CO2and water, forming dissolved inorganic carbon (DIC) and alkalinity. For long-term sequestration, these products must travel through rivers to oceans, where carbon remains stored for over 10,000 years. Carbon and alkalinity can be lost during river transport, reducing ERW efficacy. However, the ability of biological processes, such as aquatic photosynthesis, to affect the fate of DIC and alkalinity within rivers has been overlooked. Our analysis indicates that within a stream-order segment, aquatic photosynthesis uptakes 1%–30% of DIC delivered by flow for most locations. The effect of this uptake on ERW efficacy, however, depends on the cell-membrane transport mechanism and the fate of photosynthetic carbon. Different pathways can decrease just DIC, DIC and alkalinity, or just alkalinity, and the relative importance of each is unknown. Further, data show that expected river chemistry changes from ERW may stimulate photosynthesis, amplifying the importance of these biological processes. We argue that estimating ERW’s carbon sequestration potential requires consideration and better understanding of biological processes in rivers. 
    more » « less
  4. Abstract Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2removal than BECCS. 
    more » « less
  5. Abstract Ocean-based carbon dioxide (CO 2 ) removal (CDR) strategies are an important part of the portfolio of approaches needed to achieve negative greenhouse gas emissions. Many ocean-based CDR strategies rely on injecting CO 2 or organic carbon (that will eventually become CO 2 ) into the ocean interior, or enhancing the ocean’s biological pump. These approaches will not result in permanent sequestration, because ocean currents will eventually return the injected CO 2 back to the surface, where it will be brought into equilibrium with the atmosphere. Here, a model of steady state global ocean circulation and mixing is used to assess the time scales over which CO 2 injected in the ocean interior remains sequestered from the atmosphere. There will be a distribution of sequestration times for any single discharge location due to the infinite number of pathways connecting a location at depth with the sea surface. The resulting probability distribution is highly skewed with a long tail of very long transit times, making mean sequestration times much longer than typical time scales. Deeper discharge locations will sequester purposefully injected CO 2 much longer than shallower ones and median sequestration times are typically decades to centuries, and approach 1000 years in the deep North Pacific. Large differences in sequestration times occur both within and between the major ocean basins, with the Pacific and Indian basins generally having longer sequestration times than the Atlantic and Southern Oceans. Assessments made over a 50 year time horizon illustrates that most of the injected carbon will be retained for injection depths greater than 1000 m, with several geographic exceptions such as the Western North Atlantic. Ocean CDR strategies that increase upper ocean ecosystem productivity with the goal of exporting more carbon to depth will have mainly a short-term influence on atmospheric CO 2 levels because ∼70% will be transported back to the surface ocean within 50 years. The results presented here will help plan appropriate ocean CDR strategies that can help limit climate damage caused by fossil fuel CO 2 emissions. 
    more » « less