skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning Applications in Solid Organ Transplantation and Related Complications
The complexity of transplant medicine pushes the boundaries of innate, human reasoning. From networks of immune modulators to dynamic pharmacokinetics to variable postoperative graft survival to equitable allocation of scarce organs, machine learning promises to inform clinical decision making by deciphering prodigious amounts of available data. This paper reviews current research describing how algorithms have the potential to augment clinical practice in solid organ transplantation. We provide a general introduction to different machine learning techniques, describing their strengths, limitations, and barriers to clinical implementation. We summarize emerging evidence that recent advances that allow machine learning algorithms to predict acute post-surgical and long-term outcomes, classify biopsy and radiographic data, augment pharmacologic decision making, and accurately represent the complexity of host immune response. Yet, many of these applications exist in pre-clinical form only, supported primarily by evidence of single-center, retrospective studies. Prospective investigation of these technologies has the potential to unlock the potential of machine learning to augment solid organ transplantation clinical care and health care delivery systems.  more » « less
Award ID(s):
1750192
PAR ID:
10314826
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Immunology
Volume:
12
ISSN:
1664-3224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. (TSFAM) model, an adaptive human-AI teaming framework designed to enhance hard-to-place kidney acceptance decision-making by integrating transplant surgeons’ individualized expertise with advanced AI analytics (Figure 1). Methods: TSFAM is an innovative solution for complex issues in kidney transplant decision-making support. It employs fuzzy associative memory to capture and codify unique decision-making rules of transplant surgeons. Using the Deceased Donor Organ Assessment (DDOA) and Final Acceptance AI models designed to evaluate hard-to-place kidneys, TSFAM integrates fuzzy logic with deep learning techniques to manage inherent uncertainties in donor organ assessments. Surgeon-specifi c ontologies and membership functions are extracted through interviews. Similar to how a pain scale is used for understanding patients, an ontology ambiguity scale is used to develop surgeon rules (Figure 2). Fuzzy logic captures ambiguity and enables the model to adapt to evolving clinical, environmental, and policy conditions. The structured incorporation of human expertise ensures decision support remains closely aligned with local clinical practices and global best evidence. Results: This novel framework incorporates human expertise into AI decisionmaking tools to support donor organ acceptance in transplantation. Integrating surgeon-defi ned criteria into a robust decision-support tool enhances accuracy and transparency of organ allocation decision-making support. TSFAM bridges the gap between data-driven models and nuanced judgment required in complex clinical scenarios, fostering trust and promoting responsible AI adoption. Conclusions: TSFAM fuses deep learning analytics with subtleties of human expertise for a promising pathway to improve decision-making support in transplant surgery. The framework enhances clinical assessment and sets a precedent for future systems prioritizing human-AI collaboration. Prospective studies will focus on clinical implementation with dynamic interfaces for a more patient-centered, evidencebased model in organ transplantation. The intent is for this approach to be adaptable to individual case scenarios and the diverse needs of key transplant team members 
    more » « less
  2. Ex vivopreservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances. 
    more » « less
  3. Keim-Malpass, Jessica (Ed.)
    During the early stages of hospital admission, clinicians use limited information to make decisions as patient acuity evolves. We hypothesized that clustering analysis of vital signs measured within six hours of hospital admission would reveal distinct patient phenotypes with unique pathophysiological signatures and clinical outcomes. We created a longitudinal electronic health record dataset for 75,762 adult patient admissions to a tertiary care center in 2014–2016 lasting six hours or longer. Physiotypes were derived via unsupervised machine learning in a training cohort of 41,502 patients applying consensus k -means clustering to six vital signs measured within six hours of admission. Reproducibility and correlation with clinical biomarkers and outcomes were assessed in validation cohort of 17,415 patients and testing cohort of 16,845 patients. Training, validation, and testing cohorts had similar age (54–55 years) and sex (55% female), distributions. There were four distinct clusters. Physiotype A had physiologic signals consistent with early vasoplegia, hypothermia, and low-grade inflammation and favorable short-and long-term clinical outcomes despite early, severe illness. Physiotype B exhibited early tachycardia, tachypnea, and hypoxemia followed by the highest incidence of prolonged respiratory insufficiency, sepsis, acute kidney injury, and short- and long-term mortality. Physiotype C had minimal early physiological derangement and favorable clinical outcomes. Physiotype D had the greatest prevalence of chronic cardiovascular and kidney disease, presented with severely elevated blood pressure, and had good short-term outcomes but suffered increased 3-year mortality. Comparing sequential organ failure assessment (SOFA) scores across physiotypes demonstrated that clustering did not simply recapitulate previously established acuity assessments. In a heterogeneous cohort of hospitalized patients, unsupervised machine learning techniques applied to routine, early vital sign data identified physiotypes with unique disease categories and distinct clinical outcomes. This approach has the potential to augment understanding of pathophysiology by distilling thousands of disease states into a few physiological signatures. 
    more » « less
  4. Sequential decision-making problems in the context of uncertainty naturally arise in healthcare settings. In general, the frequency at which decisions can be made or changed is determined by physical limitations, such as the frequency of doctor’s visits or transplantation offers. Quantifying the benefits of increasing the frequency of decision-making allows us to quantify the value of changing these physical constraints and thus improve the quality of care. In this article, we study the value provided by having additional decision-making opportunities in each epoch. We model this problem using a Markov Decision Process (MDP) framework. We provide structural properties of the optimal policies and quantify the difference in optimal values between MDP problems of different decision-making frequencies. We analyze numerical examples using liver transplantation in high-risk patients and treatment initiation in chronic kidney disease to illustrate our findings. 
    more » « less
  5. Advancements in computing and data from the near universal acceptance and implementation of electronic health records has been formative for the growth of personalized, automated, and immediate patient care models that were not previously possible. Artificial intelligence (AI) and its subfields of machine learning, reinforcement learning, and deep learning are well-suited to deal with such data. The authors in this paper review current applications of AI in clinical medicine and discuss the most likely future contributions that AI will provide to the healthcare industry. For instance, in response to the need to risk stratify patients, appropriately cultivated and curated data can assist decision-makers in stratifying preoperative patients into risk categories, as well as categorizing the severity of ailments and health for non-operative patients admitted to hospitals. Previous overt, traditional vital signs and laboratory values that are used to signal alarms for an acutely decompensating patient may be replaced by continuously monitoring and updating AI tools that can pick up early imperceptible patterns predicting subtle health deterioration. Furthermore, AI may help overcome challenges with multiple outcome optimization limitations or sequential decision-making protocols that limit individualized patient care. Despite these tremendously helpful advancements, the data sets that AI models train on and develop have the potential for misapplication and thereby create concerns for application bias. Subsequently, the mechanisms governing this disruptive innovation must be understood by clinical decision-makers to prevent unnecessary harm. This need will force physicians to change their educational infrastructure to facilitate understanding AI platforms, modeling, and limitations to best acclimate practice in the age of AI. By performing a thorough narrative review, this paper examines these specific AI applications, limitations, and requisites while reviewing a few examples of major data sets that are being cultivated and curated in the US. 
    more » « less