skip to main content

Title: Comprehensive Analysis of a Dense Sample of FRB 121102 Bursts
Abstract We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We reanalyzed the data used by Gourdji et al. and detected 93 additional bursts using our single-pulse search pipeline. In total, we detected 133 bursts in three hours of data at a center frequency of 1.4 GHz using the Arecibo telescope, and develop robust modeling strategies to constrain the spectro-temporal properties of all of the bursts in the sample. Most of the burst profiles show a scattering tail, and burst spectra are well modeled by a Gaussian with a median width of 230 MHz. We find a lack of emission below 1300 MHz, consistent with previous studies of FRB 121102. We also find that the peak of the log-normal distribution of wait times decreases from 207 to 75 s using our larger sample of bursts, as compared to that of Gourdji et al. Our observations do not favor either Poissonian or Weibull distributions for the burst rate distribution. We searched for periodicity in the bursts using multiple techniques, but did not detect any significant period. The cumulative burst energy distribution exhibits a broken power-law shape, with the lower- and more » higher-energy slopes of −0.4 ± 0.1 and −1.8 ± 0.2, with the break at (2.3 ± 0.2) × 10 37 erg. We provide our burst fitting routines as a Python package burstfit 4 4 https://github.com/thepetabyteproject/burstfit that can be used to model the spectrogram of any complex fast radio burst or pulsar pulse using robust fitting techniques. All of the other analysis scripts and results are publicly available. 5 5 https://github.com/thepetabyteproject/FRB121102 « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1726534 2020265
Publication Date:
NSF-PAR ID:
10315122
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution ofα=1.40±0.11(stat.)0.09+0.06(sys.), consistent with the −3/2more »expectation for a nonevolving population in Euclidean space. We find thatαis steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of[820±60(stat.)200+220(sys.)]/sky/dayabove a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm−3.

    « less
  2. Intense, millisecond-duration bursts of radio waves (named fast radio bursts) have been detected from beyond the Milky Way. Their dispersion measures—which are greater than would be expected if they had propagated only through the interstellar medium of the Milky Way—indicate extragalactic origins, and imply contributions from the intergalactic medium and perhaps from other galaxies. Although several theories exist regarding the sources of these fast radio bursts, their intensities, durations and temporal structures suggest coherent emission from highly magnetized plasma. Two of these bursts have been observed to repeat, and one repeater (FRB 121102) has been localized to the largest star-forming region of a dwarf galaxy at a cosmological redshift of 0.19. However, the host galaxies and distances of the hitherto non-repeating fast radio bursts are yet to be identified. Unlike repeating sources, these events must be observed with an interferometer that has sufficient spatial resolution for arcsecond localization at the time of discovery. Here we report the localization of a fast radio burst (FRB 190523) to a few-arcsecond region containing a single massive galaxy at a redshift of 0.66. This galaxy is different from the host of FRB 121102, as it is a thousand times more massive, with a specificmore »star-formation rate (the star-formation rate divided by the mass) a hundred times smaller.« less
  3. ABSTRACT The analogy of the host galaxy of the repeating fast radio burst (FRB) source FRB 121102 and those of long gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe) has led to the suggestion that young magnetars born in GRBs and SLSNe could be the central engine of repeating FRBs. We test such a hypothesis by performing dedicated observations of the remnants of six GRBs with evidence of having a magnetar central engine using the Arecibo telescope and the Robert C. Byrd Green Bank Telescope (GBT). A total of ∼20 h of observations of these sources did not detect any FRB from these remnants. Under the assumptions that all these GRBs left behind a long-lived magnetar and that the bursting rate of FRB 121102 is typical for a magnetar FRB engine, we estimate a non-detection probability of 8.9 × 10−6. Even though these non-detections cannot exclude the young magnetar model of FRBs, we place constraints on the burst rate and luminosity function of FRBs from these GRB targets.
  4. ABSTRACT The origin of fast radio bursts (FRBs) still remains a mystery, even with the increased number of discoveries in the last 3 yr. Growing evidence suggests that some FRBs may originate from magnetars. Large, single-dish telescopes such as Arecibo Observatory (AO) and Green Bank Telescope (GBT) have the sensitivity to detect FRB 121102-like bursts at gigaparsec distances. Here, we present searches using AO and GBT that aimed to find potential radio bursts at 11 sites of past gamma-ray bursts that show evidence for the birth of a magnetar. We also performed a search towards GW170817, which has a merger remnant whose nature remains uncertain. We place $10\sigma$ fluence upper limits of ≈0.036 Jy ms at 1.4 GHz and ≈0.063 Jy ms at 4.5 GHz for the AO data and fluence upper limits of ≈0.085 Jy ms at 1.4 GHz and ≈0.098 Jy ms at 1.9 GHz for the GBT data, for a maximum pulse width of ≈42 ms. The AO observations had sufficient sensitivity to detect any FRB of similar luminosity to the one recently detected from the Galactic magnetar SGR 1935+2154. Assuming a Schechter function for the luminosity function of FRBs, we find that our non-detections favour a steep power-law index (α ≲ −1.1) and a large cut-off luminositymore »(L0 ≳ 1041 erg s−1).« less
  5. Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ / D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that themore »differential ionospheric contribution between the two sites must be measured to a precision of 1 × 10 −8 pc cm −3 to provide a reasonable localization from a detection in the 400–800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10 m telescope, the first non-repeating FRB in this long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project.« less