skip to main content


Title: Quasars with Periodic Variability: Capabilities and Limitations of Bayesian Searches for Supermassive Black Hole Binaries in Time-Domain Surveys
Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations, while the false detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs.  more » « less
Award ID(s):
1726534
NSF-PAR ID:
10315123
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve, and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in active galactic nuclei light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations, while the false-detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs. 
    more » « less
  2. Abstract

    Periodic signatures in time-domain observations of quasars have been used to search for binary supermassive black holes (SMBHs). These searches, across existing time-domain surveys, have produced several hundred candidates. The general stochastic variability of quasars, however, can masquerade as a false-positive periodic signal, especially when monitoring cadence and duration are limited. In this work, we predict the detectability of binary SMBHs in the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST). We apply computationally inexpensive sinusoidal curve fits to millions of simulated LSST Deep Drilling Field light curves of both single, isolated quasars and binary quasars. The period and phase of simulated binary signals can generally be disentangled from quasar variability. Binary amplitude is overestimated and poorly recovered for two-thirds of potential binaries due to quasar accretion variability. Quasars with strong intrinsic variability can obscure a binary signal too much for recovery. We also find that the most luminous quasars mimic current binary candidate light curves and their properties: The false-positive rates are 60% for these quasars. The reliable recovery of binary period and phase for a wide range of input binary LSST light curves is promising for multi-messenger characterization of binary SMBHs. However, pure electromagnetic detections of binaries using photometric periodicity with amplitude greater than 0.1 mag will result in samples that are overwhelmed by false positives. This paper represents an important and computationally inexpensive way forward for understanding the true and false-positive rates for binary candidates identified by Rubin.

     
    more » « less
  3. null (Ed.)
    Abstract Binary supermassive black holes (BSBHs) are expected to be a generic byproduct from hierarchical galaxy formation. The final coalescence of BSBHs is thought to be the loudest gravitational wave (GW) siren, yet no confirmed BSBH is known in the GW-dominated regime. While periodic quasars have been proposed as BSBH candidates, the physical origin of the periodicity has been largely uncertain. Here we report discovery of a periodicity (P=1607±7 days) at 99.95% significance (with a global p-value of ∼10−3 accounting for the look elsewhere effect) in the optical light curves of a redshift 1.53 quasar, SDSS J025214.67−002813.7. Combining archival Sloan Digital Sky Survey data with new, sensitive imaging from the Dark Energy Survey, the total ∼20-yr time baseline spans ∼4.6 cycles of the observed 4.4-yr (restframe 1.7-yr) periodicity. The light curves are best fit by a bursty model predicted by hydrodynamic simulations of circumbinary accretion disks. The periodicity is likely caused by accretion rate modulation by a milli-parsec BSBH emitting GWs, dynamically coupled to the circumbinary accretion disk. A bursty hydrodynamic variability model is statistically preferred over a smooth, sinusoidal model expected from relativistic Doppler boost, a kinematic effect proposed for PG1302−102. Furthermore, the frequency dependence of the variability amplitudes disfavors Doppler boost, lending independent support to the circumbinary accretion variability hypothesis. Given our detection rate of one BSBH candidate from circumbinary accretion variability out of 625 quasars, it suggests that future large, sensitive synoptic surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time may be able to detect hundreds to thousands of candidate BSBHs from circumbinary accretion with direct implications for Laser Interferometer Space Antenna. 
    more » « less
  4. null (Ed.)
    Abstract Periodically variable quasars have been suggested as close binary supermassive black holes. We present a systematic search for periodic light curves in 625 spectroscopically confirmed quasars with a median redshift of 1.8 in a 4.6 deg2 overlapping region of the Dark Energy Survey Supernova (DES-SN) fields and the Sloan Digital Sky Survey Stripe 82 (SDSS-S82). Our sample has a unique 20-year long multi-color (griz) light curve enabled by combining DES-SN Y6 observations with archival SDSS-S82 data. The deep imaging allows us to search for periodic light curves in less luminous quasars (down to r ∼23.5 mag) powered by less massive black holes (with masses ≳ 108.5M⊙) at high redshift for the first time. We find five candidates with significant (at >99.74% single-frequency significance in at least two bands with a global p-value of ∼7 × 10−4–3× 10−3 accounting for the look-elsewhere effect) periodicity with observed periods of ∼3–5 years (i.e., 1–2 years in rest frame) having ∼4–6 cycles spanned by the observations. If all five candidates are periodically variable quasars, this translates into a detection rate of ${\sim }0.8^{+0.5}_{-0.3}$% or ${\sim }1.1^{+0.7}_{-0.5}$ quasar per deg2. Our detection rate is 4–80 times larger than those found by previous searches using shallower surveys over larger areas. This discrepancy is likely caused by differences in the quasar populations probed and the survey data qualities. We discuss implications on the future direct detection of low-frequency gravitational waves. Continued photometric monitoring will further assess the robustness and characteristics of these candidate periodic quasars to determine their physical origins. 
    more » « less
  5. ABSTRACT

    We conduct a systematic search for quasars with periodic variations from the archival photometric data of the Zwicky Transient Facility by cross-matching with the quasar catalogues of the Sloan Digital Sky Survey and Véron-Cetty and Véron. We first select out 184 primitive periodic candidates using the generalized Lomb–Scargle periodogram and autocorrelation function and then estimate their statistical significance of periodicity based on two red-noise models, i.e. damped random walk (DRW) and single power-law (SPL) models. As such, we finally identify 106 (DRW) and 86 (SPL) candidates with the most significant periodic variations out of 143 700 quasars. We further compare DRW and SPL models using Bayes factors, which indicate a relative preference of the SPL model for our primitive sample. We thus adopt the candidates identified with SPL as the final sample and summarize its basic properties. We extend the light curves of the selected candidates by supplying other archival survey data to verify their periodicity. However, only three candidates (with 6–8 cycles of periods) meet the selection criteria. This result clearly implies that, instead of being strictly periodic, the variability must be quasi-periodic or caused by stochastic red-noise. This exerts a challenge to the existing search approaches and calls for developing new effective methods.

     
    more » « less