The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences. 
                        more » 
                        « less   
                    
                            
                            Indecision Modeling
                        
                    
    
            AI systems are often used to make or contribute to important decisions in a growing range of applications, including criminal justice, hiring, and medicine. Since these decisions impact human lives, it is important that the AI systems act in ways which align with human values. Techniques for preference modeling and social choice help researchers learn and aggregate peoples' preferences, which are used to guide AI behavior; thus, it is imperative that these learned preferences are accurate. These techniques often assume that people are willing to express strict preferences over alternatives; which is not true in practice. People are often indecisive, and especially so when their decision has moral implications. The philosophy and psychology literature shows that indecision is a measurable and nuanced behavior---and that there are several different reasons people are indecisive. This complicates the task of both learning and aggregating preferences, since most of the relevant literature makes restrictive assumptions on the meaning of indecision. We begin to close this gap by formalizing several mathematical indecision models based on theories from philosophy, psychology, and economics; these models can be used to describe (indecisive) agent decisions, both when they are allowed to express indecision and when they are not. We test these models using data collected from an online survey where participants choose how to (hypothetically) allocate organs to patients waiting for a transplant. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10315230
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision-making, wherein debiased decision-making is an emergent property of the coordinated and integrated processing of human–AI collaborative teams.more » « less
- 
            People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted. To help people appropriately rely on AI aids, we propose showing them behavior descriptions, details of how AI systems perform on subgroups of instances. We tested the efficacy of behavior descriptions through user studies with 225 participants in three distinct domains: fake review detection, satellite image classification, and bird classification. We found that behavior descriptions can increase human-AI accuracy through two mechanisms: helping people identify AI failures and increasing people's reliance on the AI when it is more accurate. These findings highlight the importance of people's mental models in human-AI collaboration and show that informing people of high-level AI behaviors can significantly improve AI-assisted decision making.more » « less
- 
            In many real world situations, collective decisions are made using voting and, in scenarios such as committee or board elections, employing voting rules that return multiple winners. In multi-winner approval voting (AV), an agent submits a ballot consisting of approvals for as many candidates as they wish, and winners are chosen by tallying up the votes and choosing the top-k candidates receiving the most approvals. In many scenarios, an agent may manipulate the ballot they submit in order to achieve a better outcome by voting in a way that does not reflect their true preferences. In complex and uncertain situations, agents may use heuristics instead of incurring the additional effort required to compute the manipulation which most favors them. In this paper, we examine voting behavior in single-winner and multi-winner approval voting scenarios with varying degrees of uncertainty using behavioral data obtained from Mechanical Turk. We find that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation. There are a number of predictive models of agent behavior in the social choice and psychology literature that are based on cognitively plausible heuristic strategies. We show that the existing approaches do not adequately model our real-world data. We propose a novel model that takes into account the size of the winning set and human cognitive constraints; and demonstrate that this model is more effective at capturing real-world behaviors in multi-winner approval voting scenarios.more » « less
- 
            Explanations of AI Agents' actions are considered to be an important factor in improving users' trust in the decisions made by autonomous AI systems. However, as these autonomous systems evolve from reactive, i.e., acting on user input, to proactive, i.e., acting without requiring user intervention, there is a need to explore how the explanation for the actions of these agents should evolve. In this work, we explore the design of explanations through participatory design methods for a proactive auto-response messaging agent that can reduce perceived obligations and social pressure to respond quickly to incoming messages by providing unavailability-related context. We recruited 14 participants who worked in pairs during collaborative design sessions where they reasoned about the agent's design and actions. We qualitatively analyzed the data collected through these sessions and found that participants' reasoning about agent actions led them to speculate heavily on its design. These speculations significantly influenced participants' desire for explanations and the controls they sought to inform the agents' behavior. Our findings indicate a need to transform users' speculations into accurate mental models of agent design. Further, since the agent acts as a mediator in human-human communication, it is also necessary to account for social norms in its explanation design. Finally, user expertise in understanding their habits and behaviors allows the agent to learn from the user their preferences when justifying its actions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    