skip to main content


Title: Intermediate polaronic charge transport in organic crystals from a many-body first-principles approach
Abstract Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime.  more » « less
Award ID(s):
1750613
NSF-PAR ID:
10316748
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime.

     
    more » « less
  2. Transition metal oxides such as BiVO 4 are promising photoelectrode materials for solar-to-fuel conversion applications. However, their performance is limited by the low carrier mobility (especially electron mobility) due to the formation of small polarons. Recent experimental studies have shown improved carrier mobility and conductivity by atomic doping; however the underlying mechanism is not understood. A fundamental atomistic-level understanding of the effects on small polaron transport is critical to future material design with high conductivity. We studied the small polaron hopping mobility in pristine and doped BiVO 4 by combining Landau–Zener theory and kinetic Monte Carlo (kMC) simulation fully from first-principles, and investigated the effect of dopant–polaron interactions on the mobility. We found that polarons are spontaneously formed at V in both pristine and Mo/W doped BiVO 4 , which can only be described correctly by density functional theory (DFT) with the Hubbard correction (DFT+U) or hybrid exchange-correlation functional but not local or semi-local functionals. We found that DFT+U and dielectric dependant hybrid (DDH) functionals give similar electron hopping barriers, which are also similar between the room temperature monoclinic phase and the tetragonal phase. The calculated electron mobility agrees well with experimental values, which is around 10 −4 cm 2 V −1 s −1 . We found that the electron polaron transport in BiVO 4 is neither fully adiabatic nor nonadiabatic, and the first and second nearest neighbor hoppings have significantly different electronic couplings between two hopping centers that lead to different adiabaticity and prefactors in the charge transfer rate, although they have similar hopping barriers. Without considering the detailed adiabaticity through Landau–Zener theory, one may get qualitatively wrong carrier mobility. We further computed polaron mobility in the presence of different dopants and showed that Cr substitution of V is an electron trap while Mo and W are “repulsive” centers, mainly due to the minimization of local lattice expansion by dopants and electron polarons. The dopants with “repulsive” interactions to polarons are promising for mobility improvement due to larger wavefunction overlap and delocalization of locally concentrated polarons. 
    more » « less
  3. Abstract

    The formation of a “spin polaron” stems from strong spin-charge-lattice interactions in magnetic oxides, which leads to a localization of carriers accompanied by local magnetic polarization and lattice distortion. For example, cupric oxide (CuO), which is a promising photocathode material and shares important similarities with highTcsuperconductors, conducts holes through spin polaron hopping with flipped spins at Cu atoms where a spin polaron has formed. The formation of these spin polarons results in an activated hopping conduction process where the carriers must not only overcome strong electron−phonon coupling but also strong magnetic coupling. Collectively, these effects cause low carrier conduction in CuO and hinder its applications. To overcome this fundamental limitation, we demonstrate from first-principles calculations how doping can improve hopping conduction through simultaneous improvement of hole concentration and hopping mobility in magnetic oxides such as CuO. Specifically, using Li doping as an example, we show that Li has a low ionization energy that improves hole concentration, and lowers the hopping barrier through both the electron−phonon and magnetic couplings' reduction that improves hopping mobility. Finally, this improved conduction predicted by theory is validated through the synthesis of Li-doped CuO electrodes which show enhanced photocurrent compared to pristine CuO electrodes. We conclude that doping with nonmagnetic shallow impurities is an effective strategy to improve hopping conductivities in magnetic oxides.

     
    more » « less
  4. Hematite (α-Fe 2 O 3 ) is a promising transition metal oxide for various energy conversion and storage applications due to its advantages of low cost, high abundance, and good chemical stability. However, its low carrier mobility and electrical conductivity have hindered the wide application of hematite-based devices. Fundamentally, this is mainly caused by the formation of small polarons, which show conduction through thermally activated hopping. Atomic doping is one of the most promising approaches for improving the electrical conductivity in hematite. However, its impact on the carrier mobility and electrical conductivity of hematite at the atomic level remains to be illusive. In this work, through a kinetic Monte-Carlo sampling approach for diffusion coefficients combined with carrier concentrations computed under charge neutrality conditions, we obtained the electrical conductivity of the doped hematite. We considered the contributions from individual Fe–O layers, given that the in-plane carrier transport dominates. We then studied how different dopants impact the carrier mobility in hematite using Sn, Ti, and Nb as prototypical examples. We found that the carrier mobility change is closely correlated with the local distortion of Fe–Fe pairs, i.e. the more stretched the Fe–Fe pairs are compared to the pristine systems, the lower the carrier mobility will be. Therefore, elements which limit the distortion of Fe–Fe pair distances from pristine are more desired for higher carrier mobility in hematite. The calculated local structure and pair distribution functions of the doped systems have remarkable agreement with the experimental EXAFS measurements on hematite nanowires, which further validates our first-principles predictions. Our work revealed how dopants impact the carrier mobility and electrical conductivity of hematite and provided practical guidelines to experimentalists on the choice of dopants for the optimal electrical conductivity of hematite and the performance of hematite-based devices. 
    more » « less
  5. Abstract

    In the present work we theoretically analyze thermoelectric transport in single-molecule junctions (SMJ) characterized by strong interactions between electrons on the molecular linkers and phonons in their nuclear environments where electron hopping between the electrodes and the molecular bridge states predominates in the steady state electron transport. The analysis is based on the modified Marcus theory accounting for the lifetime broadening of the bridge’s energy levels. We show that the reorganization processes in the environment accompanying electron transport may significantly affect SMJ thermoelectric properties both within and beyond linear transport regime. Specifically, we study the effect of environmental phonons on the electron conductance, the thermopower and charge current induced by the temperature gradient applied across the system.

     
    more » « less