Chemically-synthesized single-crystalline silver nanowire (AgNW) probes can combine the scanning tunneling microscopy (STM) technique with tip-enhanced Raman scattering spectroscopy (TERS) for complementary morphological and chemical information with nanoscale spatial resolution. However, its performance has been limited by the blunt nanowire tip geometry, the insulating surfactant layer coating AgNW surfaces, and the thermal-induced mechanical vibrations. Here, we report a reproducible fabrication method for the preparation of sharp-tip AgNW-based TERS probes. By removing the polyvinylpyrrolidone (PVP) surfactant molecules from the AgNW surfaces for stable electrical conductivity and controlling the protruding length with μm-level accuracy for improved mechanical stability, we demonstrate atomic-resolution STM imaging with the sharp-tip AgNW probe. Furthermore, the sharp-tip AgNW has an excellent TER enhancement (∼1.1 × 10 6 ), which is about 66 folds of that achieved by regular AgNWs. Our experiments demonstrate that AgNWs with clean interfaces and the proper tip geometry can provide reliable and reproducible STM and TER characterizations, which remove the hurdles preventing the implementation of AgNW in STM-based near-field optical applications for a broad community. 
                        more » 
                        « less   
                    
                            
                            Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices
                        
                    
    
            Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1654794
- PAR ID:
- 10316845
- Date Published:
- Journal Name:
- Nano Research
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 1998-0124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Germanium nanowires (NWs) have attractive properties for a variety of applications, including micro- and optoelectronics, memory devices, solar energy conversion, and energy storage, among others. For applications that involve exposure to air, the poor chemical stability and electronic surface passivation of native oxides have remained a long-standing concern. Termination by sulfur-rich surface layers has emerged as a promising strategy for passivation of planar Ge surfaces. Here we discuss experiments on solid-state sulfurization of Ge nanowires in sulfur vapor at near-ambient pressures and at different temperatures. Combined transmission electron microscopy imaging and chemical mapping establishes that Ge NWs remain intact during vapor-phase reaction with S at elevated temperatures, and show the formation of sulfur-rich shells with T-dependent morphology and thickness on the Ge NW surface. Photoluminescence of ensembles of such core–shell nanowires is dominated by strong emission at ∼1.85 eV, consistent with luminescence of GeS. Cathodoluminescence spectroscopy on individual NWs establishes that this luminescence originates in thin GeS shells formed by sulfurization of the NWs. Our work establishes direct sulfurization as a viable approach for forming stable, wide-bandgap surface terminations on Ge NWs.more » « less
- 
            WO3/WS2 core/shell nanowires were synthesized using a scalable fabrication method by combining wet chemical etching and chemical vapor deposition (CVD). Initially, WO3 nanowires were formed through wet chemical etching using a potassium hydroxide (KOH) solution, followed by oxidation at 650 °C. These WO3 nanowires were then sulfurized at 900 °C to form a WS2 shell, resulting in WO3/WS2 core/shell nanowires with diameters ranging from 90 to 370 nm. The synthesized nanowires were characterized using scanning electron microscopy (SEM), Raman, energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The shell is composed of 2D WS2 layers with uniformly spaced 2D layers as well as the atomically sharp core/shell interface of WO3/WS2. Notably, the WO3/WS2 heterostructure nanowires exhibited a unique negative photoresponse under visible light (405 nm) illumination. This negative photoresponse highlights the importance of interface engineering in these heterostructures and demonstrates the potential of WO3/WS2 core/shell nanowires for applications in photodetectors and other optoelectronic devices.more » « less
- 
            Abstract Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk‐free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high‐fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold‐coated silver nanowires (Au–Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au–Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2–7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.more » « less
- 
            In this study, the thermal stability of Au–Al2O3 core–shell and Au nanowires was investigated by in situ scanning transmission electron microscopy and other techniques. The nanowires were synthesized by the helium droplets method and deposited on various substrates. The in situ characterization of Au–Al2O3 thermal stability demonstrated a substantially enhanced stability as compared to that of pure Au nanowires, which can be a transformative approach to design more durable Au-based nanocatalysts. Our study also revealed the existence of strong metal–support bonding in the Au/Al2O3 system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    