skip to main content


Title: Self-controlling photonic-on-chip networks with deep reinforcement learning
Abstract We present a novel photonic chip design for high bandwidth four-degree optical switches that support high-dimensional switching mechanisms with low insertion loss and low crosstalk in a low power consumption level and a short switching time. Such four-degree photonic chips can be used to build an integrated full-grid Photonic-on-Chip Network (PCN). With four distinct input/output directions, the proposed photonic chips are superior compared to the current bidirectional photonic switches, where a conventionally sizable PCN can only be constructed as a linear chain of bidirectional chips. Our four-directional photonic chips are more flexible and scalable for the design of modern optical switches, enabling the construction of multi-dimensional photonic chip networks that are widely applied for intra-chip communication networks and photonic data centers. More noticeably, our photonic networks can be self-controlling with our proposed Multi-Sample Discovery model, a deep reinforcement learning model based on Proximal Policy Optimization. On a PCN, we can optimize many criteria such as transmission loss, power consumption, and routing time, while preserving performance and scaling up the network with dynamic changes. Experiments on simulated data demonstrate the effectiveness and scalability of the proposed architectural design and optimization algorithm. Perceivable insights make the constructed architecture become the self-controlling photonic-on-chip networks.  more » « less
Award ID(s):
1650499
NSF-PAR ID:
10317242
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic–photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo‐optic or electro‐optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase‐change materials (PCMs) exhibit strong optical modulation in a static, self‐holding fashion, but the scalability of present PCM‐integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM‐clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy‐efficient switching units operated with low driving voltages, near‐zero additional loss, and reversible switching with high endurance are obtained in a complementary metal‐oxide‐semiconductor (CMOS)‐compatible process. This work can potentially enable very large‐scale CMOS‐integrated programmable electronic–photonic systems such as optical neural networks and general‐purpose integrated photonic processors.

     
    more » « less
  2. Abstract

    Microwave photonics uses light to carry and process microwave signals over a photonic link. However, light can instead be used as a stimulus to microwave devices that directly control microwave signals. Such optically controlled amplitude and phase-shift switches are investigated for use in reconfigurable microwave systems, but they suffer from large footprint, high optical power level required for switching, lack of scalability and complex integration requirements, restricting their implementation in practical microwave systems. Here, we report Monolithic Optically Reconfigurable Integrated Microwave Switches (MORIMSs) built on a CMOS compatible silicon photonic chip that addresses all of the stringent requirements. Our scalable micrometer-scale switches provide higher switching efficiency and require optical power orders of magnitude lower than the state-of-the-art. Also, it opens a new research direction on silicon photonic platforms integrating microwave circuitry. This work has important implications in reconfigurable microwave and millimeter wave devices for future communication networks.

     
    more » « less
  3. Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity patterns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge. Network-on-Chip (NoC)- based architectures provide a way to overcome this challenge as the architectural topology can be used to approximately model the expected traffic patterns that emerge from graph application workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based architecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)- enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) counterparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Processing (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph applications are inherently memory intensive, off-chip data movement gives rise to latency and energy overheads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is not integrated with the logic, off-chip data movement negatively impacts overall performance and energy consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework that integrates 3D memory (like Micron's HMC) with a massive number of GPU cores achieves 29.5% performance improvement and 30.03% less energy consumption on average compared to a conventional planar Mesh-based design with external DRAM. 
    more » « less
  4. Photonic Network-on-Chips (PNoCs) offer promising benefits over Electrical Network-on-Chips (ENoCs) in many-core systems owing to their lower latencies, higher bandwidth, and lower energy-per-bit communication with negligible data-dependent power. These benefits, however, are limited by a number of challenges. Microring resonators (MRRs) that are used for photonic communication have high sensitivity to process variations and on-chip thermal variations, giving rise to possible resonant wavelength mismatches. State-of-the-art microheaters, which are used to tune the resonant wavelength of MRRs, have poor efficiency resulting in high thermal tuning power. In addition, laser power and high static power consumption of drivers, serializers, comparators, and arbitration logic partially negate the benefits of the sub-pJ operating regime that can be obtained with PNoCs. To reduce PNoC power consumption, this paper introduces WAVES, a wavelength selection technique to identify and activate the minimum number of laser wavelengths needed, depending on an application's bandwidth requirement. Our results on a simulated 2.5D manycore system with PNoC demonstrate an average of 23% (resp. 38%) reduction in PNoC power with only <;1% (resp. <;5%) loss in system performance. 
    more » « less
  5. Photonic network-on-chip (PNoC) architectures employ photonic links with dense wavelength-division multiplexing (DWDM) to enable high throughput on-chip transfers. Unfortunately, increasing the DWDM degree (i.e., using a larger number of wavelengths) to achieve a higher aggregated data rate in photonic links and, hence, higher throughput in PNoCs, requires sophisticated and costly laser sources along with extra photonic hardware. This extra hardware can introduce undesired noise to the photonic link and increase the bit error rate (BER), power, and area consumption of PNoCs. To mitigate these issues, the use of 4-pulse amplitude modulation (4-PAM) signaling, instead of the conventional on-off keying (OOK) signaling, can halve the wavelength signals utilized in photonic links for achieving the target aggregate data rate while reducing the overhead of crosstalk noise, BER, and photonic hardware. There are various designs of 4-PAM modulators reported in the literature. For example, the signal superposition (SS)–, electrical digital-to-analog converter (EDAC)–, and optical digital-to-analog converter (ODAC)–based designs of 4-PAM modulators have been reported. However, it is yet to be explored how these SS-, EDAC-, and ODAC-based 4-PAM modulators can be utilized to design DWDM-based photonic links and PNoC architectures. In this article, we provide a systematic analysis of the SS, EDAC, and ODAC types of 4-PAM modulators from prior work with regards to their applicability and utilization overheads. We then present a heuristic-based search method to employ these 4-PAM modulators for designing DWDM-based SS, EDAC, and ODAC types of 4-PAM photonic links with two different design goals: (i) to attain the desired BER of 10 -9 at the expense of higher optical power and lower aggregate data rate and (ii) to attain maximum aggregate data rate with the desired BER of 10 -9 at the expense of longer packet transfer latency. We then employ our designed 4-PAM SS–, 4-PAM EDAC–, 4-PAM ODAC–, and conventional OOK modulator–based photonic links to constitute corresponding variants of the well-known CLOS and SWIFT PNoC architectures. We eventually compare our designed SS-, EDAC-, and ODAC-based variants of 4-PAM links and PNoCs with the conventional OOK links and PNoCs in terms of performance and energy efficiency in the presence of inter-channel crosstalk. From our link-level and PNoC-level evaluation, we have observed that the 4-PAM EDAC–based variants of photonic links and PNoCs exhibit better performance and energy efficiency compared with the OOK-, 4-PAM SS–, and 4-PAM ODAC–based links and PNoCs. 
    more » « less