skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 9, 2025

Title: Optical Comb-Based Monolithic Photonic-Electronic Accelerators for Self-Attention Computation
This paper adopts advanced monolithic silicon-photonics integrated-circuits manufacturing capabilities to realize system-on-chip photonic-electronic linear-algebra accelerators for self-attention computation in various applications of deep-learning neural networks and Large Language Models. With the features of holistic co-design approaches, optical comb-based broadband modulations, and consecutive matrix-multiplication architecture, the system/circuit/device-level simulations of the proposed accelerator can achieve 2.14-TMAC/s/mm2 computation density and 27.9-fJ/MAC energy efficiency with practical considerations of power/area overhead due to photonic-electronic on-chip conversions, integrations, and calibrations.  more » « less
Award ID(s):
2023730 2410053 2217453 2045935
PAR ID:
10553811
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
Capmany, José
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Journal of Selected Topics in Quantum Electronics
Edition / Version:
1
Volume:
30
Issue:
5
ISSN:
1077-260X
Page Range / eLocation ID:
1-17
Subject(s) / Keyword(s):
Frequency comb, large language model, linear algebra, matrix-matrix multiplication, matrix-vector multiplication, micro-resonator, monolithic integration, racetrack resonator, self-attention, silicon photonics, transformer model.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bosco, Gabriella (Ed.)
    A system-on-chip (SoC) photonic-electronic linear-algebra accelerator with the features of wavelength-division-multiplexing (WDM) based broadband photodetections and high-dimensional matrix-inversion operations fabricated in advanced monolithic silicon-photonics (M-SiPh) semiconductor process technology is proposed to achieve substantial leaps in computation density and energy efficiency, including realistic considerations of energy/area overhead due to electronic/photonic on-chip conversions, integrations, and calibrations through holistic co-design methodologies to support linear-detection based massive multiple-input multiple-output (MIMO) decoding technology requiring the inversion of channel matrices and other emergent applications limited by linear-algebra computation capacities. 
    more » « less
  2. Aluminum gallium arsenide-on-insulator (AlGaAsOI) exhibits large [Formula: see text] and [Formula: see text] optical nonlinearities, a wide tunable bandgap, low waveguide propagation loss, and a large thermo-optic coefficient, making it an exciting platform for integrated quantum photonics. With ultrabright sources of quantum light established in AlGaAsOI, the next step is to develop the critical building blocks for chip-scale quantum photonic circuits. Here we expand the quantum photonic toolbox for AlGaAsOI by demonstrating edge couplers, 3 dB splitters, tunable interferometers, and waveguide crossings with performance comparable to or exceeding silicon and silicon-nitride quantum photonic platforms. As a demonstration, we de-multiplex photonic qubits through an unbalanced interferometer, paving the route toward ultra-efficient and high-rate chip-scale demonstrations of photonic quantum computation and information applications. 
    more » « less
  3. The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry–Pérot resonators with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry–Pérot resonators with a silicon photonic circuit. This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound–Drever–Hall frequency locking, while also suppressing unwanted back reflections from the Fabry–Pérot resonator. Using inverse design principles, we design and fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface several reflective off-chip devices. 
    more » « less
  4. Abstract The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance. 
    more » « less
  5. We demonstrate a CMOS electronic-photonic photon-pair source with integrated feedback-controlled frequency locking,>80 dB on-chip pump rejection, and signal/idler de-multiplexing, achieving a CAR of ≃5 at ≃40 ccps pair rate. 
    more » « less