skip to main content

This content will become publicly available on December 1, 2022

Title: Grain size dependent high-pressure elastic properties of ultrafine micro/nanocrystalline grossular
Abstract We have performed sound velocity and unit cell volume measurements of three synthetic, ultrafine micro/nanocrystalline grossular samples up to 50 GPa using Brillouin spectroscopy and synchrotron X-ray diffraction. The samples are characterized by average grain sizes of 90 nm, 93 nm and 179 nm (hereinafter referred to as samples Gr90, Gr93, and Gr179, respectively). The experimentally determined sound velocities and elastic properties of Gr179 sample are comparable with previous measurements, but slightly higher than those of Gr90 and Gr93 under ambient conditions. However, the differences diminish with increasing pressure, and the velocity crossover eventually takes place at approximately 20–30 GPa. The X-ray diffraction peaks of the ultrafine micro/nanocrystalline grossular samples significantly broaden between 15–40 GPa, especially for Gr179. The velocity or elasticity crossover observed at pressures over 30 GPa might be explained by different grain size reduction and/or inhomogeneous strain within the individual grains for the three grossular samples, which is supported by both the pressure-induced peak broadening observed in the X-ray diffraction experiments and transmission electron microscopy observations. The elastic behavior of ultrafine micro/nanocrystalline silicates, in this case, grossular, is both grain size and pressure dependent.
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1646527
Publication Date:
NSF-PAR ID:
10317633
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. Molybdenum (Mo), which is one among the refractory metals, is a promising material with a wide variety of technological applications in microelectronics, optoelectronics, and energy conversion and storage. However, understanding the structure–property correlation and optimization at the nanoscale dimension is quite important to meet the requirements of the emerging nanoelectronics and nanophotonics. In this context, we focused our efforts to derive a comprehensive understanding of the nanoscale structure, phase, and electronic properties of nanocrystalline Mo films with variable microstructure and grain size. Molybdenum films were deposited under varying temperature (25–500 °C), which resulted in Mo films with variable grain sizemore »of 9–22 nm. The grazing incidence X-ray diffraction analyses indicate the (110) preferred growth behavior the Mo films, though there is a marked decrease in hardness and elastic modulus values. In particular, there is a sizable difference in maximum and minimum elastic modulus values; the elastic modulus decreased from ~460 to 260–280 GPa with increasing substrate temperature from 25–500 °C. The plasticity index and wear resistance index values show a dramatic change with substrate temperature and grain size. Additionally, the optical properties of the nanocrystalline Mo films evaluated by spectroscopic ellipsometry indicate a marked dependence on the growth temperature and grain size. This dependence on grain size variation was particularly notable for the refractive index where Mo films with lower grain size fell in a range between ~2.75–3.75 across the measured wavelength as opposed to the range of 1.5–2.5 for samples deposited at temperatures of 400–500 °C, where the grain size is relatively higher. The conductive atomic force microscopy (AFM) studies indicate a direct correlation with grain size variation and grain versus grain boundary conduction; the trend noted was improved electrical conductivity of the Mo films in correlation with increasing grain size. The combined ellipsometry and conductive AFM studies allowed us to optimize the structure–property correlation in nanocrystalline Mo films for application in electronics and optoelectronics.« less
  2. Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariantmore »v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.« less
  3. Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite (FA50) with the highest Fe3+‐Al3+ coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions the FA50 adopted the LiNbO3 structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields V 0 = 172.1(4) Å3, K 0 = 229(4) GPa with K 0′ = 4(fixed). The calculated bulk sound velocitymore »of the FA50 bridgmanite is ~7.7% lower than MgSiO3 bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+ substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing ~6% of Fe3+ cations exchanged with Al3+ and underwent the high‐spin to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+ increased gradually with pressure and reached 17‐31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+ fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.« less
  4. Abstract In this study, we have investigated the crystal structure and equation of state of tetragonal CaSiO3-perovskite up to 200 GPa using synchrotron X-ray diffraction in laser-heated diamond-anvil cells. X-ray diffraction patterns of the quenched CaSiO3-perovskite above 148 GPa clearly show that 200, 211, and 220 peaks of the cubic phase split into 004+220, 204+312, and 224+400 peak pairs, respectively, in the tetragonal structure, and their calculated full-width at half maximum (FWHM) exhibits a substantial increase with pressure. The distribution of diffraction peaks suggests that the tetragonal CaSiO3-perovskite most likely has an I4/mcm space group at 300 K between 148more »and 199 GPa, although other possibilities might still exist. Using the Birch-Murnaghan equations, we have determined the equation of state of tetragonal CaSiO3-perovskite, yielding the bulk modulus K0T = 227(21) GPa with the pressure derivative of the bulk modulus, K0T′ = 4.0(3). Modeled sound velocities at 580 K and around 50 GPa using our results and literature values show the difference in the compressional (VP) and shear-wave velocity (VS) between the tetragonal and cubic phases to be 5.3 and 6.7%, respectively. At ~110 GPa and 1000 K, this phase transition leads to a 4.3 and 9.1% jump in VP and VS, respectively. Since the addition of Ti can elevate the transition temperature, the transition from the tetragonal to cubic phase may have a seismic signature compatible with the observed mid-lower mantle discontinuity around the cold subduction slabs, which needs to be explored in future studies.« less
  5. Abstract Calcium carbonate (CaCO3) is one of the most abundant carbonates on Earth's surface and transports carbon to Earth's interior via subduction. Although some petrological observations support the preservation of CaCO3 in cold slabs to lower mantle depths, the geophysical properties and stability of CaCO3 at these depths are not known, due in part to complicated polymorphic phase transitions and lack of constraints on thermodynamic properties. Here we measured thermal equation of state of CaCO3-Pmmn, the stable polymorph of CaCO3 through much of the lower mantle, using synchrotron X-ray diffraction in a laser-heated diamond-anvil cell up to 75 GPa andmore »2200 K. The room-temperature compression data for CaCO3-Pmmn are fit with third-order Birch-Murnaghan equation of state, yielding KT0 = 146.7 (±1.9) GPa and K′0 = 3.4(±0.1) with V0 fixed to the value determined by ab initio calculation, 97.76 Å3. High-temperature compression data are consistent with zero-pressure thermal expansion αT = a0 + a1T with a0 = 4.3(±0.3)×10-5 K-1, a1 = 0.8(±0.2)×10-8 K-2, temperature derivative of the bulk modulus (∂KT/∂T)P = –0.021(±0.001) GPa/K; the Grüneisen parameter γ0 = 1.94(±0.02), and the volume independent constant q = 1.9(±0.3) at a fixed Debye temperature θ0 = 631 K predicted via ab initio calculation. Using these newly determined thermodynamic parameters, the density and bulk sound velocity of CaCO3-Pmmn and (Ca,Mg)-carbonate-bearing eclogite are quantitatively modeled from 30 to 80 GPa along a cold slab geotherm. With the assumption that carbonates are homogeneously mixed into the slab, the results indicate the presence of carbonates in the subducted slab is unlikely to be detected by seismic observations, and the buoyancy provided by carbonates has a negligible effect on slab dynamics.« less