skip to main content


Title: Low-Energy Elastic Electron Scattering from Helium Atoms
We reinvestigate a key process in electron-atom collision physics, the elastic scattering of electrons from helium atoms. Specifically, results from a special-purpose relativistic polarized-orbital method, which is designed to treat elastic scattering only, are compared with those from a very extensive, fully ab initio, general-purpose B-spline R-matrix (close-coupling) code.  more » « less
Award ID(s):
2110023 1834740 1803844
NSF-PAR ID:
10317812
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atoms
Volume:
9
Issue:
4
ISSN:
2218-2004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. P-type point contact (PPC) germanium detectors are used in rare event and low-background searches, including neutrinoless double beta (0νββ) decay, low-energy nuclear recoils, and coherent elastic neutrino-nucleus scattering. The detectors feature an excellent energy resolution, low detection thresholds down to the sub-keV range, and enhanced background rejection capabilities. However, due to their large passivated surface, separating the signal readout contact from the bias voltage electrode, PPC detectors are susceptible to surface effects such as charge build-up. A profound understanding of their response to surface events is essential. In this work, the response of a PPC detector to alpha and beta particles hitting the passivated surface was investigated in a multi-purpose scanning test stand. It is shown that the passivated surface can accumulate charges resulting in a radial-dependent degradation of the observed event energy. In addition, it is demonstrated that the pulse shapes of surface alpha events show characteristic features which can be used to discriminate against these events. 
    more » « less
  2. Abstract We present the analysis and results of the first datasetcollected with the MARS neutron detectordeployed at the Oak Ridge NationalLaboratory Spallation Neutron Source (SNS) for the purpose ofmonitoring and characterizing the beam-related neutron (BRN) backgroundfor the COHERENT collaboration. MARS was positionednext to the COH-CsI coherent elastic neutrino-nucleus scattering detectorin the SNS basement corridor. This is the basement location ofclosest proximity to the SNS target and thus, of highest neutrino flux,but it is also well shielded from the BRN flux by infill concreteand gravel. These data show the detector registered roughly one BRN per day.Using MARS' measured detection efficiency, the incomingBRN flux is estimated to be 1.20 ± 0.56 neutrons/m^2/MWhfor neutron energies above ∼3.5 MeV and up to a few tens of MeV.We compare our results with previous BRN measurements in the SNS basement corridorreported by other neutron detectors. 
    more » « less
  3. Abstract

    We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of$$2.12\times 10^{35}$$2.12×1035 cm$$^{-2}\cdot $$-2·s$$^{-1}$$-1 ($$\approx 200$$200times the luminosity achieved by OLYMPUS). The proposed two-photon exchange experiment (TPEX) entails a commissioning run at a beam energy of 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to$$Q^2=4.6$$Q2=4.6 (GeV/c)$$^2$$2(twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations.

     
    more » « less
  4. A bstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino non-standard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering. 
    more » « less
  5. null (Ed.)
    New connections between static elastic cloaking, low-frequency elastic wave scattering and neutral inclusions (NIs) are established in the context of two-dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform elastic matrix. Given the core and matrix properties, we answer the questions of how to select the shell material such that (i) it acts as a static elastic cloak, and (ii) it eliminates low-frequency scattering of incident elastic waves. It is shown that static cloaking (i) requires an anisotropic shell, whereas scattering reduction (ii) can be satisfied more simply with isotropic materials. Implicit solutions for the shell material are obtained by considering the core–shell composite cylinder as a neutral elastic inclusion. Two types of NI are distinguished, weak and strong with the former equivalent to low-frequency transparency and the classical Christensen and Lo generalized self-consistent result for in-plane shear from 1979. Our introduction of the strong NI is an important extension of this result in that we show that standard anisotropic shells can act as perfect static cloaks, contrasting previous work that has employed ‘unphysical’ materials. The relationships between low-frequency transparency, static cloaking and NIs provide the material designer with options for achieving elastic cloaking in the quasi-static limit. 
    more » « less