skip to main content


Title: Low-Energy Elastic Electron Scattering from Helium Atoms
We reinvestigate a key process in electron-atom collision physics, the elastic scattering of electrons from helium atoms. Specifically, results from a special-purpose relativistic polarized-orbital method, which is designed to treat elastic scattering only, are compared with those from a very extensive, fully ab initio, general-purpose B-spline R-matrix (close-coupling) code.  more » « less
Award ID(s):
2110023 1834740 1803844
NSF-PAR ID:
10317812
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atoms
Volume:
9
Issue:
4
ISSN:
2218-2004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A range of ultrasonic techniques associated with the nondestructive evaluation of metals involves the propagation of low-frequency elastic waves. Metals that are isotropic and homogeneous in the macroscopic length scale contain elastic heterogeneities, such as grain boundaries within the microstructures. Ultrasonic waves propagating through such microstructures get scattered from the grain boundaries. As a result, the propagating ultrasound attenuates. The mass density and the elastic anisotropy in each constituent grain govern the degree of heterogeneity in the polycrystalline aggregates. Existing elastodynamic models consider first-order scattering effects from grain boundaries. This paper presents the improved attenuation formulae, for the first time, by including the next order of grain scattering effects. Results from investigating 759 polycrystals reveal a positive correlation between the effects of higher-order scattering from grain boundaries and the degree of heterogeneity. Thus, higher-order grain scattering effects are now known. These results motivate further investigation into higher frequencies and strongly scattering alloys in the future. 
    more » « less
  2. Abstract

    There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We present quantum mechanical and semiclassical calculations of the elastic scattering differential cross sections and rate coefficients of the C60fullerene with He and Ar noble-gas atoms in order to quantify the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion coefficients have been computed from frequency dependent polarizabilities of C60and the noble-gas atoms. We find that the potential of the fullerene with He is about five times shallower than that with Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have computed differential cross sections at the collision energies used in experiments by Han et al. (Chem Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory agreement for C60scattering with Ar.

     
    more » « less
  3. null (Ed.)
    New connections between static elastic cloaking, low-frequency elastic wave scattering and neutral inclusions (NIs) are established in the context of two-dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform elastic matrix. Given the core and matrix properties, we answer the questions of how to select the shell material such that (i) it acts as a static elastic cloak, and (ii) it eliminates low-frequency scattering of incident elastic waves. It is shown that static cloaking (i) requires an anisotropic shell, whereas scattering reduction (ii) can be satisfied more simply with isotropic materials. Implicit solutions for the shell material are obtained by considering the core–shell composite cylinder as a neutral elastic inclusion. Two types of NI are distinguished, weak and strong with the former equivalent to low-frequency transparency and the classical Christensen and Lo generalized self-consistent result for in-plane shear from 1979. Our introduction of the strong NI is an important extension of this result in that we show that standard anisotropic shells can act as perfect static cloaks, contrasting previous work that has employed ‘unphysical’ materials. The relationships between low-frequency transparency, static cloaking and NIs provide the material designer with options for achieving elastic cloaking in the quasi-static limit. 
    more » « less
  4. A bstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino non-standard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering. 
    more » « less
  5. Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles. 
    more » « less