Abstract This study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes an idealized numerical simulation to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt–Väisälä frequency of 0.011 s−1above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on composite sounding. The characteristics of the simulated bore were representative of observed bores. The vertical velocities associated with this simulated bore were between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100–150 km ahead of the bore passage. The prebore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low to midtroposphere between 1 and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.
more »
« less
The Heat-Flux Imbalance: The Role of Advection and Dispersive Fluxes on Heat Transport Over Thermally Heterogeneous Terrain
Data from the Idealized Planar-Array experiment for Quantifying Spatial heterogeneity are used to perform a control volume analysis (400 × 400 × × 2 m^3) on the total derivative of the temperature tendency equation. Analysis of the heat-flux imbalance, which is defined as the ratio of the sum of advective, dispersive, and turbulence-flux terms to the turbulence-flux term, are presented. Results are divided amongst free-convective and forced-convective days, as well as high-wind-speed and quiescent nocturnal periods. Findings show that the median flux imbalance is greater on forced-convective days (a 168% turbulence-flux overestimation, or relative importance of the advection to dispersive flux to the turbulence flux) when compared to free-convective periods (79% turbulence-flux overestimation). During nocturnal periods, a median turbulence-flux underestimation of 146% exists for quiescent nights and a 43% underestimation of the flux for high-wind-speed nights. These results support the existing literature, suggesting that mean air-temperature heterogeneities lead to strong bulk advection and dispersive fluxes. A discussion of the impact of the flux imbalance on the surface energy balance and numerical-weather-prediction modelling is presented.
more »
« less
- Award ID(s):
- 1649067
- PAR ID:
- 10318225
- Date Published:
- Journal Name:
- Boundary-Layer Meteorology
- ISSN:
- 0006-8314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nocturnal spatial variation of temperature, wind, and turbulence over microtopography is generally poorly understood. Low amplitude microtopography covers much of the Earth’s surface and, with very stable conditions, can produce significant spatial variations of temperature and turbulence. We examine such variations over gentle terrain that include two shallow gullies that feed into a small valley. The gullies are covered by a sub-network of seven flux stations that is embedded within a larger network that covers the valley. The measurements indicate that gullies of only 2–5-m depth and 100-m width can often lead to spatial variations of temperature of several kelvin or more. Such variations depend on ambient wind speed and direction and the near-surface stratification. We investigate the surprising importance of microscale lee turbulence occurring over the gentle microtopography with slopes of only 5%. Near-surface stratification unexpectedly tends to increase with surface elevation on the slopes. We examine the potential causes of this puzzling behaviour of the near-surface stratification.more » « less
-
Our study examines the horizontal variation of the nocturnal surface air temperature by analyzing measurements from four contrasting networks of stations with generally modest topography. The horizontal extent of the networks ranges from 1 to 23 km. For each network, we investigate the general relationship of the horizontal variation of temperature to the wind speed, wind direction, near-surface stratification, and turbulence. As an example, the horizontal variation of temperature generally increases with increasing stratification and decreases with increasing wind speed. However, quantitative details vary significantly between the networks. Needed changes of the observational strategy are discussed.more » « less
-
Abstract Typical environmental conditions associated with horizontal convective rolls (HCRs) and cellular convection have been known for over 50 years. Yet our ability to predict whether HCRs, cellular convection, or no discernable organized (null) circulation will occur within a well-mixed convective boundary layer based upon easily observed environmental variables has been limited. Herein, a large database of 50 cases each of HCR, cellular convection, and null events is created that includes observations of mean boundary layer wind and wind shear, boundary layer depth; surface observations of wind, temperature, and relative humidity; and estimates of surface sensible heat flux. Results from a multiclass linear discriminant analysis applied to these data indicate that environmental conditions can be useful in predicting whether HCRs, cellular convection, or no circulation occurs, with the analysis identifying the correct circulation type on 72% of the case days. This result is slightly better than using a mean convective boundary layer (CBL) wind speed of 6 m s−1to discriminate between HCRs and cells. However, the mean CBL wind speed has no ability to further separate out cases with no CBL circulation. The key environmental variables suggested by the discriminant analysis are mean sensible heat flux, friction velocity, and the Obukhov length.more » « less
-
Abstract Terrain slopes with and without upslope large surface roughness impact downstream shear‐generated turbulence differently in the nighttime stable boundary layer (SBL). These differences can be identified through variations in the relationship between turbulence and wind speed at a given height, known as the HOckey STick (HOST) transition, as compared to the HOST relationship over flat terrain. The transport of cold surface air from elevated uniform terrain reduces downstream air temperature not much air stratification. As terrain slope rises, the increasing cold and heavy air enhances downstream hydrostatic imbalance, resulting in increasing turbulence for a given wind speed. That is, the rate of turbulence increase with wind speed from downslope flow is independent of terrain slope. Upslope large surface roughness elements enhance vertical turbulent mixing, elevating cold surface air from the terrain. Horizontal transport of this elevated, cold, turbulent air layer reduces the downstream upper warm air temperature. Benefiting from the progressive reduction of downstream stable stratification with increasing height in the SBL, wind shear can effectively generate strong turbulence. In addition to the turbulence enhancement from the cold downslope flow, the rate of turbulence increase with wind speed is elevated. This study demonstrates key physical mechanisms for turbulence generation captured by the HOST relationship. It also highlights the influence of terrain features on these mechanisms through deviations from the HOST relationship over flat terrain.more » « less
An official website of the United States government

