skip to main content


Title: Unified Distributed Control of Grid-Forming and Grid-Feeding Converters in DC Microgrids with Average Voltage Regulation and Current Sharing
This paper proposes a unified distributed secondary control for the grid-forming (GFM) and grid-feeding (GFE) converters in DC microgrids. An optimization problem is formulated for the secondary control and the objective function considers regulating the global average of the GFM and GFE converter output voltages and proportional current sharing among all GFM and GFE converters. A unified distributed control is then designed to generate voltage and current references respectively for GFM and GFE converters based on the formulated optimization problem. The dynamic model of the DC microgrid under the proposed control is also developed, and steady-state analysis is performed to show that the proposed distributed control can achieve the control objectives in steady state. The performance of the proposed control is validated through real-time simulations in OPAL-RT on an 8-DG DC microgrid system.  more » « less
Award ID(s):
2103426 2403660
NSF-PAR ID:
10318997
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a droop-free distributed secondary control for DC microgrids with admissible voltage profile guarantees. The control objectives are achieved through an average voltage regulator, voltage variance regulator, and a relaxed current sharing regulator. Regulations of the global average voltage to the microgrid rated voltage is ensured by the average voltage regulator and regulations of the global voltage variance to a predetermined reference is enabled by the voltage variance regulator. In order to achieve the objectives of voltage regulation, the current sharing from one of the DGs which may be owned by the microgrid community is relaxed. The global dynamic model of the DC microgrid with the proposed control is derived. Besides, steady-state analysis is performed to show that all objectives can be achieved. Finally, simulations on a 4-DG DC microgrid test system are performed to validate the efficacy of the proposed control. 
    more » « less
  2. Abstract

    The mass deployment of distributed energy resources (DERs) to achieve clean energy objectives has become a major goal across several states in the U.S. However, the viability and reality of achieving these goals in dense urban areas, such as New York City, are challenged by several ‘Techno‐Economic’ barriers associated with available land space and the number of AC/direct current (DC) conversion stages that requires multiple electrical balance of plant (BOP) equipment for pairing/interconnecting these resources to the grid. The fundamental issue of interconnection is addressed by assessing the use of a common DC bus in a one‐of‐a‐kind configuration (to pair grid‐connected energy storage, photovoltaic, and electric vehicle chargers (EVC) systems) and reduce the number of BOP equipment needed for deployment. Building on similar work that has touched on distribution‐level DC interconnection, this paper will also address the intricacies of interconnecting third‐party and Utility DERs to a DC‐based point of common coupling. It will examine the requisite site controller configuration (control architecture) and requirements to coordinate the energy storage system's use between managing Utility and Third‐Party EVC demand while prioritising dispatch. The result shows that the DC‐coupled system is technologically feasible and hierarchical control architecture is recommended to maintain stability during various use cases proposed. This will inform a lab demonstration of this system that aims to test DC integration of the DERs with recommendations for the microgrid (MG) controllers and reduction in the BOP equipment. These learnings will then be applied to practical grid‐scale deployment of the systems at Con Edison's Cedar Street Substation. This system, if proven successful, has the potential to change the way community distributed generation and MGs are interconnected to the Utility System.

     
    more » « less
  3. null (Ed.)
    This article presents the state-of-the-art application of a Unified Power Flow Controller (UPFC) to directly interface ocean wave energy converters (WEC) with the utility grid. It is shown that the transformer flux saturation problem at variable low-frequency operation poses no technical issue for the ocean power applications because a direct-proportionality relationship exists between frequency and amplitude of the WEC output voltages. We have proposed a direct interface of WEC with the utility grid using a series compensation transformer of the UPFC controller. The shunt input rectification segment of the UPFC acts not only as the DC bus for the UFPC operation but also as an embedded energy storage stage for the WEC. The mathematical formulation and simulation results are presented as a proof-of- concept for FACTS-based WEC-grid integration with the integrated energy storage capability. 
    more » « less
  4. Historically, the power system has relied on synchronous generators (SGs) to provide inertia and maintain grid stability. However, because of the increased integration of power-electronics-interfaced renewable energy sources, the grid’s stability has been challenged in the last decade due to a lack of inertia. Currently, the system predominantly uses grid-following (GFL) converters, built on the assumption that inertial sources regulate the system stability. Such an assumption does not hold for the low-inertia grids of the future. Grid-forming (GFM) converters, which mimic the traditional synchronous machinery’s functionalities, have been identified as a potential solution to support the low-inertia grids. The performance analysis of GFM converters for small-signal instability can be found in the literature, but large-signal instability is still an open research question. Moreover, various topologies and configurations of GFM converters have been proposed. Still, no comparative study combining all GFC configurations from the perspective of large-signal stability issues can be found. This paper combines and compares all the existing GFM control schemes from the perspective of large-signal stability issues to pave the way for future research and development of GFM converters for large-signal stability analysis and stabilization of the future low-inertia grids. 
    more » « less
  5. Electrical power systems are transitioning from fuel-based generation to renewable generation and transmission interfaced by power electronics. This transition challenges standard power system modeling, analysis, and control paradigms across timescales from milliseconds to seasons. This tutorial focuses on frequency stability on timescales of milliseconds to seconds. We first review basic results for grid-following (GFL) and grid-forming (GFM) control of voltage source converters (VSCs), typical renewable generation, and high voltage direct current (HVdc) transmission. In this context, it becomes apparent that GFL and GFM control functions are needed to operate emerging power systems. However, combining GFL resources, GFM resources, and legacy generation on the same system results in highly complex dynamics that are a significant obstacle to stability analysis. The remainder of the tutorial provides an overview of recent developments in universal GFM controls that bridge the gap between GFL and GFM control and provide a pathway to a coherent control and analysis framework accounting for power generation, power conversion, and power transmission. 
    more » « less