skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A dual number abstraction for static analysis of Clarke Jacobians
We present a novel abstraction for bounding the Clarke Jacobian of a Lipschitz continuous, but not necessarily differentiable function over a local input region. To do so, we leverage a novel abstract domain built upon dual numbers, adapted to soundly over-approximate all first derivatives needed to compute the Clarke Jacobian. We formally prove that our novel forward-mode dual interval evaluation produces a sound, interval domain-based over-approximation of the true Clarke Jacobian for a given input region. Due to the generality of our formalism, we can compute and analyze interval Clarke Jacobians for a broader class of functions than previous works supported – specifically, arbitrary compositions of neural networks with Lipschitz, but non-differentiable perturbations. We implement our technique in a tool called DeepJ and evaluate it on multiple deep neural networks and non-differentiable input perturbations to showcase both the generality and scalability of our analysis. Concretely, we can obtain interval Clarke Jacobians to analyze Lipschitz robustness and local optimization landscapes of both fully-connected and convolutional neural networks for rotational, contrast variation, and haze perturbations, as well as their compositions.  more » « less
Award ID(s):
1846354 1956374 2008883
PAR ID:
10319480
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
6
Issue:
POPL
ISSN:
2475-1421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A robustness certificate is the minimum distance of a given input to the decision boundary of the classifier (or its lower bound). For {\it any} input perturbations with a magnitude smaller than the certificate value, the classification output will provably remain unchanged. Exactly computing the robustness certificates for neural networks is difficult since it requires solving a non-convex optimization. In this paper, we provide computationally-efficient robustness certificates for neural networks with differentiable activation functions in two steps. First, we show that if the eigenvalues of the Hessian of the network are bounded, we can compute a robustness certificate in the l2 norm efficiently using convex optimization. Second, we derive a computationally-efficient differentiable upper bound on the curvature of a deep network. We also use the curvature bound as a regularization term during the training of the network to boost its certified robustness. Putting these results together leads to our proposed {\bf C}urvature-based {\bf R}obustness {\bf C}ertificate (CRC) and {\bf C}urvature-based {\bf R}obust {\bf T}raining (CRT). Our numerical results show that CRT leads to significantly higher certified robust accuracy compared to interval-bound propagation (IBP) based training. We achieve certified robust accuracy 69.79\%, 57.78\% and 53.19\% while IBP-based methods achieve 44.96\%, 44.74\% and 44.66\% on 2,3 and 4 layer networks respectively on the MNIST-dataset. 
    more » « less
  2. Sagastizábal, C (Ed.)
    The convergence theory for the gradient sampling algorithm is extended to directionally Lipschitz functions. Although directionally Lipschitz functions are not necessarily locally Lipschitz, they are almost everywhere differentiable and well approximated by gradients and so are a natural candidate for the application of the gradient sampling algorithm. The main obstacle to this extension is the potential unboundedness or emptiness of the Clarke subdifferential at points of interest. The convergence analysis we present provides one path to addressing these issues. In particular, we recover the usual convergence theory when the function is locally Lipschitz. Moreover, if the algorithm does not drive a certain measure of criticality to zero, then the iterates must converge to a point at which either the Clarke subdifferential is empty or the direction of steepest descent is degenerate in the sense that it does lie in the interior of the domain of the regular subderivative. 
    more » « less
  3. We present a novel, general construction to abstractly interpret higher-order automatic differentiation (AD). Our construction allows one to instantiate an abstract interpreter for computing derivatives up to a chosen order. Furthermore, since our construction reduces the problem of abstractly reasoning about derivatives to abstractly reasoning about real-valued straight-line programs, it can be instantiated with almost any numerical abstract domain, both relational and non-relational. We formally establish the soundness of this construction. We implement our technique by instantiating our construction with both the non-relational interval domain and the relational zonotope domain to compute both first and higher-order derivatives. In the latter case, we are the first to apply a relational domain to automatic differentiation for abstracting higher-order derivatives, and hence we are also the first abstract interpretation work to track correlations across not only different variables, but different orders of derivatives. We evaluate these instantiations on multiple case studies, namely robustly explaining a neural network and more precisely computing a neural network’s Lipschitz constant. For robust interpretation, first and second derivatives computed via zonotope AD are up to 4.76× and 6.98× more precise, respectively, compared to interval AD. For Lipschitz certification, we obtain bounds that are up to 11,850× more precise with zonotopes, compared to the state-of-the-art interval-based tool. 
    more » « less
  4. White-box targeted adversarial attacks reveal core vulnerabilities in Deep Neural Networks (DNNs), yet two key challenges persist: (i) How many target classes can be attacked simultaneously in a specified order, known as the ordered top-K attack problem (K ≥ 1)? (ii) How to compute the corresponding adversarial perturbations for a given benign image directly in the image space? We address both by showing that ordered top-K perturbations can be learned via iteratively optimizing linear combinations of the right singular vectors of the adversarial Jacobian (i.e., the logit-to-image Jacobian constrained by target ranking). These vectors span an orthogonal, informative subspace in the image domain. We introduce RisingAttacK, a novel Sequential Quadratic Programming (SQP)-based method that exploits this structure. We propose a holistic figure-of-merits (FoM) metric combining attack success rates (ASRs) and ℓp-norms (p = 1, 2, ∞). Extensive experiments on ImageNet-1k across six ordered top-K levels (K = 1, 5, 10, 15, 20, 25, 30) and four models (ResNet-50, DenseNet-121, ViTB, DEiT-B) show RisingAttacK consistently surpasses the state-of-the-art QuadAttacK. 
    more » « less
  5. We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties. 
    more » « less