- Award ID(s):
- 2034584
- Publication Date:
- NSF-PAR ID:
- 10319931
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 88
- Issue:
- 9
- ISSN:
- 0021-8936
- Sponsoring Org:
- National Science Foundation
More Like this
-
Origami provides a flexible platform for constructing three-dimensional multi-stable mechanical metamaterials and structures. While possessing many interesting features originating from folding, the development of multi-stable origami structures is faced with tremendous demands for acquiring tunability and adaptability. Through an integration of origami folding with magnets, this research proposes a novel approach to synthesize and harness multi-stable magneto-origami structures. Based on the stacked Miura-ori and the Kresling ori structures, we reveal that the embedded magnets could effectively tune the structure’s potential energy landscapes, which includes not only altering the position and the depth of the potential wells but essentially eliminating the intrinsic potential wells or generating new potential wells. Such magnet-induced evolutions of potential energy landscapes would accordingly change the origami structure’s stability profiles and the constitutive force–displacement relations. Based on proof-ofconcept prototypes with permeant magnets, the theoretically predicted effects of magnets are verified. The exploration is also extended to the dynamics realm. Numerical studies suggest that the incorporated magnets not only could translate the critical frequencies for achieving certain dynamical behaviors but also fundamentally adjust the frequency-amplitude relationship. Overall, this study shows that the proposed approach would provide a novel means to control the stability profile as well as themore »
-
Biomimetic synaptic processes, which are imitated by functional memory devices in the computer industry, are a key focus of artificial intelligence (AI) research. It is critical to developing a memory technology that is compatible with Brain-Inspired Computing in order to eliminate the von Neumann bottleneck that restricts the efficiency of traditional computer designs. Due to restrictions such as high operation voltage, poor retention capacity, and high power consumption, silicon-based flash memory, which presently dominates the data storage devices market, is having difficulty meeting the requirements of future data storage device development. The developing resistive random-access memory (RRAM) has sparked intense investigation because of its simple two-terminal structure: two electrodes and a switching layer. RRAM has a resistive switching phenomenon which is a cycling behavior between the high resistance state and the low resistance state. This developing device type is projected to outperform traditional memory devices. Indium gallium zinc oxide (IGZO) has attracted great attention for the RRAM switching layer because of its high transparency and high atomic diffusion property of oxygen atoms. More importantly, by controlling the oxygen ratio in the sputter gas, its electrical properties can be easily tuned. The IGZO has been applied to the thin-film transistor (TFT),more »
-
Abstract Topological mechanical metamaterials have been widely explored for their boundary states, which can be robustly isolated or transported in a controlled manner. However, such systems often require pre-configured design or complex active actuation for wave manipulation. Here, we present the possibility of in-situ transfer of topological boundary modes by leveraging the reconfigurability intrinsic in twisted origami lattices. In particular, we employ a dimer Kresling origami system consisting of unit cells with opposite chirality, which couples longitudinal and rotational degrees of freedom in elastic waves. The quasi-static twist imposed on the lattice alters the strain landscape of the lattice, thus significantly affecting the wave dispersion relations and the topology of the underlying bands. This in turn facilitates an efficient topological state transfer from one edge to the other. This simple and practical approach to energy transfer in origami-inspired lattices can thus inspire a new class of efficient energy manipulation devices.
-
Many structural systems are susceptible to soft-story instabilities during earthquakes that are lifethreatening and can lead to damage that is too costly to repair. One way to mitigate damage and reduce the potential for soft-story instability is through the addition of an elastic spine that distributes drifts across the height of a structure. One such system is the strongback braced frame, which replaces one side of a buckling-restrained braced frame with a strongback truss. With the strongback providing vertical continuity, an expanded design space is made available for the arrangement of buckling-restrained braces (BRBs) or other energy-dissipating members. An example of this expanded design space is that a designer could opt to not include BRBs at every story. Methods for proportioning the energy-dissipating resistance in strongback braced frames have been proposed. However, most methods don't allow exploitation of the full design space. The objective of this work is to propose and evaluate a potential method of proportioning energy-dissipating members for arbitrary vertical arrangements within strongback braced frames. For a prototypical building, the BRBs are designed in various configurations using existing methods and with the new method. Nonlinear time history analyses of the resulting designs coupled with a rigid strongback aremore »
-
Origami designs have attracted significant attention from researchers seeking to develop new types of deployable structures due to their ability to undergo large and complex yet predictable shape changes. The Kresling pattern, which is based on a natural accumulation of folds and creases during the twistbuckling of a thin-walled cylinder, offers a great example for the design of deployable systems that expand uniaxially into tubes or booms. However, much remains to be understood regarding the characteristics of Kresling-based deployable systems, and their dynamics during the deployment process remain largely unexplored. Hence this research investigates the deployment of Kresling origami-inspired structures, employing a full sixdegree- of-freedom truss-based model to study their dynamics under different conditions. Results show that tuning the initial rotation angle of a structure gives rise to several qualitatively distinct mechanical properties and stability characteristics, each of which has different implications for the design of the deployable systems. Dynamic analyses reveal the robustness of Kresling structures to out-of-axis perturbations while remaining compliant in the axial direction. These findings suggest that Kresling-based designs can form the basis for the development of new types of deployable structures and systems with tunable performance.