- Publication Date:
- NSF-PAR ID:
- 10321144
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 509
- Issue:
- 4
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
The recent detection of a neutron star merger by the LIGO collaboration has renewed interest in laboratory studies of r-process elements. Accurate modeling and interpretation of the electromagnetic transients following the mergers requires computationally expensive calculations of both the structure and opacity of all trans-iron elements. To date, the necessary atomic data to benchmark structure codes are incomplete or, in some cases, absent entirely. Within the available laboratory studies, the literature on Au I and Au II provides incomplete reports of the emission lines and level structures. We present a new study of Au I and Au II lines and levels by exposing a solid gold target to plasma in the Compact Toroidal Hybrid (CTH) experiment at Auburn University. A wavelength range from 187 to 800 nm was studied. In Au I, 86 lines are observed, 43 of which are unreported in the literature, and the energies of 18 5d9 6s 6p levels and 16 of the 18 known 5d9 6s 6d levels are corroborated by a least-squares level energy optimization. In Au II, 76 emission lines are observed, and 51 of the lines are unreported in the literature. For both Au I and Au II, the new lines predominantlymore »
-
Direct detection of gravitational waves (GWs) on 17 August 2017, propagating from a binary neutron star merger, or a “kilonova”, opened the era of multimessenger astronomy. The ejected material from neutron star mergers, or “kilonova”, is a good candidate for optical and near infrared follow-up observations after the detection of GWs. The kilonova from the ejecta of GW1780817 provided the first evidence for the astrophysical site of the synthesis of heavy nuclei through the rapid neutron capture process or r-process. Since properties of the emission are largely affected by opacities of the ejected material, enhancements in the available r-process data is important for neutron star merger modeling. However, given the complexity of the electronic structure of these heavy elements, considerable efforts are still needed to converge to a reliable set of atomic structure data. The aim of this work is to alleviate this situation for low charge state elements in the Os-like isoelectronic sequence. In this regard, the general-purpose relativistic atomic structure packages (GRASP0 and GRASP2K) were used to obtain energy levels and transition probabilities (E1 and M1). We provide line lists and expansion opacities for a range of r-process elements. We focus here on the Os isoelectronic sequence (Osmore »
-
The recent detection of a neutron star merger by the LIGO collaboration has renewed interest in laboratory studies of r-process elements. Accurate modeling and interpretation of the electromagnetic transients following the mergers requires computationally expensive calculations of both the structure and opacity of all trans-iron elements. To date, the necessary atomic data to benchmark structure codes are incomplete or, in some cases, absent entirely. Within the available laboratory studies, the literature on Au I and Au II provides incomplete reports of the emission lines and level structures. We present a new study of Au I and Au II lines and levels by exposing a solid gold target to plasma in the Compact Toroidal Hybrid (CTH) experiment at Auburn University. A wavelength range from 187 to 800nm was studied. In Au I, 86 lines are observed, 43 of which are unreported in the literature, and the energies of 18 5d96s6plevels and 16 of the 18 known 5d96s6dlevels are corroborated by a least-squares level energy optimization. In Au II, 76 emission lines are observed, and 51 of the lines are unreported in the literature. For both Au I and Au II, the new lines predominantly originate from the most energetic of themore »
-
Abstract The detection of a gravitational-wave signal and subsequent electromagnetic transient from a neutron star merger in 2017 is consistent with expectations of neutron star mergers as an
r -process element production site. Within the first few days post-merger, the kilonova spectra are consistent with a blackbody illuminating a mix of heavy,r -process elements. With increasing time, the kilonova transitions to the non-LTE regime where the level populations and ionization balance are determined by both collisional and photoprocesses. Detailed cross section data for electron-impact processes involving the relevant species are often not available. In such circumstances, it is reasonable to use approximate methods as baseline data for use in spectral modeling, and it is useful to evaluate the accuracy of such methods against more sophisticated collision calculations when possible. We describe new calculations of the electron-impact excitation cross sections of Pti –iIi using the DARCR -matrix codes. Using collisional-radiative models, we show that, at plasma conditions expected in kilonovae, the expressions of van Regemorter and Axelrod are insufficient for producing electron-impact excitation data for complex, heavy species such as the low charge states of Pt. Through comparisons with data generated with the relativistic distorted wave approach, as implemented in the Flexible Atomic Code, we show themore » -
ABSTRACT We analyse a series of XMM–Newton RGS data of the binary Wolf–Rayet star WR140 that encompasses one entire orbit. We find that the RGS detects X-rays from optically thin thermal plasma only during orbital phases when the companion O star is on the near side of the WR star. Although such X-rays are believed to be emitted from the shock cone formed through collision of the stellar winds, temperature and density profiles of the plasma along the cone have not been measured observationally. We find that the temperature of the plasma producing Ne emission lines is 0.4–0.8 keV, using the intensity ratio of Kα lines from He-like and H-like Ne. We also find, at orbital phases 0.816 and 0.912, that the electron number density in the Ne line-emission site is approximately 1012 cm−3 from the observed intensity ratios f/r and i/r of the He-like triplet. We calculated the shock cone shape analytically, and identify the distance of the Ne line-emission site from the shock stagnation point to be 0.9–8.9 × 1013 cm using the observed ratio of the line-of-sight velocity and its dispersion. This means that we will be able to obtain the temperature and density profiles along the shock cone with emissionmore »