skip to main content


Title: Recurrent Rossby waves during Southeast Australian heatwaves and links to quasi-resonant amplification and atmospheric blocks
In the Northern Hemisphere, recurrence of transient Rossby wave packets over periods of days to weeks, termed RRWPs, may repeatedly create similar weather conditions. This recurrence leads to persistent surface anomalies and high-impact weather events. Here, we demonstrate the significance of RRWPs for persistent heatwaves in the Southern Hemisphere (SH). We investigate the relationship between RRWPs, atmospheric blocking, and amplified quasi-stationary Rossby waves with two cases of heatwaves in Southeast Australia (SEA) in 2004 and 2009. This region has seen extraordinary heatwaves in recent years. We also investigate the importance of transient systems such as RRWPs and two other persistent dynamical drivers: atmospheric blocks and quasi-resonant amplification (QRA). We further explore the link between RRWPs, blocks, and QRA in the SH using the ERA-I reanalysis dataset (1979–2018). We find that QRA and RRWPs are strongly associated: 40% of QRA days feature RRWPs, and QRA events are 13 times more likely to occur with an RRWPs event than without it. Furthermore, days with QRA and RRWPs show high correlations in the composite mean fields of upper-level flows, indicating that both features have a similar hemispheric flow configuration. Blocking frequencies for QRA and RRWP conditions both increase over the south Pacific Ocean but differ substantially over parts of the south Atlantic and Indian Ocean.  more » « less
Award ID(s):
1934358
NSF-PAR ID:
10321911
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Weather and climate dynamics
ISSN:
2698-4016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The persistence of surface weather during several recent high-impact weather events has been pivotal in generating their societal impact. Here we examine Hovmöller diagrams of the 250-hPa meridional wind during several periods with particularly persistent surface weather and find a common pattern in these Hovmöller diagrams. This pattern can be characterized as a “recurrent Rossby wave pattern” (RRWP), arising from multiple transient synoptic-scale wave packets. During such RRWP periods, individual troughs and ridges forming the wave packets repeatedly amplify in the same geographical region. We discuss the synoptic evolution of two RRWP periods, in February–March 1987 and July–August 1994, and illustrate how the recurrence of the transient wave packets led to unusually long-lasting cold and hot spells, which occurred simultaneously in several regions, each separated by roughly one synoptic wavelength. Furthermore, a simple index termed R is proposed to identify RRWPs, which is based on both a time and wavenumber filter applied to conventional Hovmöller diagrams. A Weibull regression analysis then shows that large values of R are statistically significantly linked to increased durations of winter cold and summer hot spells in large areas of the Northern Hemisphere midlatitudes. Traditionally, persistent high-impact surface weather has often been linked to the occurrence of proximate atmospheric blocking. In contrast to blocking, RRWPs affect persistent surface temperature anomalies over multiple synoptic wavelengths. We therefore argue that, in addition to blocking, RRWPs should be considered as an important flow feature leading to persistent high-impact surface weather.

     
    more » « less
  2. Longstanding climate model biases in tropical precipitation exist over the east Pacific (EP) Ocean, especially during boreal winter and spring when models have excessive Southern Hemisphere (SH) precipitation near the intertropical convergence zone (ITCZ). In this study, we document the impact of convectively coupled waves (CCWs) on EP precipitation and the ITCZ using observations and reanalyses. We focus on the months when SH precipitation peaks in observations: February–April (FMA). CCWs explain 93% of total precipitation variance in the SH, nearly double the percent (48%) of the NH during FMA. However, we note that these percentages are inflated as they inevitably include the background variance. We further investigate the three leading high-frequency wave bands: mixed Rossby–gravity waves and tropical depression–type disturbances (MRG–TD type), Kelvin waves, andn= 0 eastward inertia–gravity waves (IG0). Compared to their warm pool counterparts, these three CCWs have a more zonally elongated and meridionally narrower precipitation structure with circulations that resemble past observational studies and/or shallow water theory. We quantify the contribution of all CCWs to four different daily ITCZ “states”: Northern Hemisphere (NH) (nITCZ), SH (sITCZ), double (dITCZ), and equatorial (eITCZ) using a new precipitation-based ITCZ-state algorithm. We find that the percent of total precipitation variance explained by each of the CCWs is heightened for sITCZs and eITCZs and diminished for nITCZs. Last, we find that nITCZs are most prevalent weeks after strong CCW activity happens in the NH, whereas CCWs and sITCZs peak simultaneously in the SH.

    Significance Statement

    Convectively coupled atmospheric waves (CCWs) are a critical feature of tropical weather and are an important source of precipitation near the region of highest precipitation on Earth called the intertropical convergence zone (ITCZ). Given three decades of climate model biases in CCWs and ITCZ precipitation over the east Pacific (EP) Ocean during spring, few studies have examined the relationship between CCWs and the springtime EP ITCZ. We explored the CCWs and EP ITCZ relationship through calculations of the percent of precipitation that comes from CCWs. A significant portion of the tropical precipitation is associated with CCWs during spring. CCWs are even more impactful when the ITCZ is in the SH or on the equator, which are both problematic in climate models.

     
    more » « less
  3. Abstract

    During boreal winter (December–February), the South American monsoon system (SAMS) reaches its annual maximum when upper‐tropospheric westerly winds prevail over the equatorial Atlantic. Atmospheric dynamic model simulations suggest that Rossby waves generated over South America can propagate to and potentially influence weather patterns in the Northern Hemisphere (NH). However, observational evidence has been absent previously. Here we focus on southeastern South American (SESA) precipitation anomalies, which can characterize intraseasonal rainfall variability of the SAMS. Since tropical “westerly duct” and convective heating are important factors for cross‐equatorial propagation of Rossby wave (CEPRW), we identify two groups of events based on the two factors. By comparing the events associated with both SESA rainfall and tropical westerlies to the events associated with tropical westerlies only, we find that an anomalous Rossby wave train is triggered by precipitation anomalies over SESA, propagates in the southwest–northeast direction, and subsequently crosses the equator. Over a period of 4 days, near‐surface temperature over northwestern Africa and western Europe becomes warmer, accompanied by increased surface downward longwave radiation and precipitable water. The equatorward propagating Eliassen–Palm flux anomalies originated from SESA support the evidence of CEPRW. Simulations using a time‐dependent linear barotropic model forced by prescribed divergence anomalies over SESA further confirm that SESA rainfall can influence the NH weather patterns through CEPRW. Knowledge of this study will help us better understand and model interhemispheric teleconnections over the American–Atlantic–African/European sector.

     
    more » « less
  4. Abstract

    The composite structure of the Madden–Julian oscillation (MJO) has long been known to feature pronounced Rossby gyres in the subtropical upper troposphere, whose existence can be interpreted as the forced response to convective heating anomalies in the presence of a subtropical westerly jet. The question of interest here is whether these forced gyre circulations have any subsequent effects on divergence patterns in the tropics and the Kelvin-mode component of the MJO. A nonlinear spherical shallow water model is used to investigate how the introduction of different background jet profiles affects the model’s steady-state response to an imposed MJO-like stationary thermal forcing. Results show that a stronger jet leads to a stronger Kelvin-mode response in the tropics up to a critical jet speed, along with stronger divergence anomalies in the vicinity of the forcing. To understand this behavior, additional calculations are performed in which a localized vorticity forcing is imposed in the extratropics, without any thermal forcing in the tropics. The response is once again seen to include pronounced equatorial Kelvin waves, provided the jet is of sufficient amplitude. A detailed analysis of the vorticity budget reveals that the zonal-mean zonal wind shear plays a key role in amplifying the Kelvin-mode divergent winds near the equator, with the effects of nonlinearities being of negligible importance. These results help to explain why the MJO tends to be strongest during boreal winter when the Indo-Pacific jet is typically at its strongest.

    Significance Statement

    The MJO is a planetary-scale convectively coupled equatorial disturbance that serves as a primary source of atmospheric predictability on intraseasonal time scales (30–90 days). Due to its dominance and spontaneous recurrence, the MJO has a significant global impact, influencing hurricanes in the tropics, storm tracks, and atmosphere blocking events in the midlatitudes, and even weather systems near the poles. Despite steady improvements in subseasonal-to-seasonal (S2S) forecast models, the MJO prediction skill has still not reached its maximum potential. The root of this challenge is partly due to our lack of understanding of how the MJO interacts with the background mean flow. In this work, we use a simple one-layer atmospheric model with idealized heating and vorticity sources to understand the impact of the subtropical jet on the MJO amplitude and its horizontal structure.

     
    more » « less
  5. Abstract

    Given paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) may affect the global climate system, we conduct model experiments with EC-Earth3, a state-of-the-art GCM, to specifically investigate, for the first time, mechanisms of precipitation change over the Euro-Atlantic sector induced by a weakened AMOC. We artificially weaken the strength of the AMOC in the model through the release of a freshwater anomaly into the Northern Hemisphere high latitude ocean, thereby obtaining a ~ 57% weaker AMOC with respect to its preindustrial strength for 60 model years. Similar to prior studies, we find that Northern Hemisphere precipitation decreases in response to a weakened AMOC. However, we also find that the frequency of wet days increases in some regions. By computing the atmospheric moisture budget, we find that intensified but drier storms cause less precipitation over land. Nevertheless, changes in the jet stream tend to enhance precipitation over northwestern Europe. We further investigate the association of precipitation anomalies with large-scale atmospheric circulations by computing weather regimes through clustering of geopotential height daily anomalies. We find an increase in the frequency of the positive phase of the North Atlantic Oscillation (NAO+), which is associated with an increase in the occurrence of wet days over northern Europe and drier conditions over southern Europe. Since a ~ 57% reduction in the AMOC strength is within the inter-model range of projected AMOC declines by the end of the twenty-first century, our results have implications for understanding the role of AMOC in future hydrological changes.

     
    more » « less