skip to main content


Title: Weyl Fermion magneto-electrodynamics and ultralow field quantum limit in TaAs
Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measurements on TaAs. We observed sharp inter-Landau level transitions from a single pocket of Weyl Fermions in magnetic fields as low as 0.4 tesla. We determine the W2 Weyl point to be 8.3 meV below the Fermi energy, corresponding to a quantum limit—the field required to reach the lowest LL—of 0.8 tesla—unprecedentedly low for Weyl Fermions. LL spectroscopy allows us to isolate these Weyl Fermions from all other carriers in TaAs, and our result provides a way for directly exploring the more exotic quantum phenomena in Weyl semimetals, such as the chiral anomaly.  more » « less
Award ID(s):
1752784
NSF-PAR ID:
10322105
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
2
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasilinear interband contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies, the optical response is governed by transitions between a previously unobserved fourfold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly, our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.

     
    more » « less
  2. Three-dimensional (3D) topological semimetals represent a new class of topological matters. The study of this family of materials has been at the frontiers of condensed matter physics, and many breakthroughs have been made. Several topological semimetal phases, including Dirac semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-point semimetals, have been theoretically predicted and experimentally demonstrated. The low-energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal point can be viewed as emergent relativistic fermions. Experimental studies have shown that relativistic fermions can result in a rich variety of exotic transport properties, e.g., extremely large magnetoresistance, the chiral anomaly, and the intrinsic anomalous Hall effect. In this review, we first briefly introduce band structural characteristics of each topological semimetal phase, then review the current studies on quantum oscillations and exotic transport properties of various topological semimetals, and finally provide a perspective of this area. 
    more » « less
  3. Abstract

    Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.

     
    more » « less
  4. Abstract

    Parity‐time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realization of magnetic topological DSMs remains a major issue in topological material research. Here, combining angle‐resolved photoemission spectroscopy with density functional theory calculations, it is ascertained that band inversion induces a topologically nontrivial ground state in EuCd2As2. As a result, ideal magnetic Dirac fermions with simplest double cone structure near the Fermi level emerge in the antiferromagnetic (AFM) phase. The magnetic order breaks time reversal symmetry, but preserves inversion symmetry. The double degeneracy of the Dirac bands is protected by a combination of inversion, time‐reversal, and an additional translation operation. Moreover, the calculations show that a deviation of the magnetic moments from thec‐axis leads to the breaking of C3 rotation symmetry, and thus, a small bandgap opens at the Dirac point in the bulk. In this case, the system hosts a novel state containing three different types of topological insulator: axion insulator, AFM topological crystalline insulator (TCI), and higher order topological insulator. The results provide an enlarged platform for the quest of topological Dirac fermions in a magnetic system.

     
    more » « less
  5. Abstract

    Nodal‐line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type‐I and type‐II Weyl semimetals, there are two types of NLSs. The type‐I NLS phase has been proposed and realized in many compounds, whereas the exotic type‐II NLS phase that strongly violates Lorentz symmetry has remained elusive. First‐principles calculations show that Mg3Bi2is a material candidate for the type‐II NLS. The band crossing is close to the Fermi level and exhibits the type‐II nature of the nodal line in this material. Spin–orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2that yields the type‐II nodal line. Based on this prediction, Mg3Bi2single crystals are synthesized and the presence of the type‐II nodal lines in the material is confirmed. The angle‐resolved photoemission spectroscopy measurements agree well with the first‐principles results below the Fermi level and thus strongly suggest Mg3Bi2as an ideal material platform for studying the as‐yet unstudied properties of type‐II nodal‐line semimetals.

     
    more » « less