skip to main content


Title: Remote Undergraduate Research to Increase Participation and Engagement in Community College Engineering Classes: Bridging the Research Opportunity Gap Between Community College and University Students.
Award ID(s):
2000281
NSF-PAR ID:
10322109
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Zone 1 Conference of the American Society for Engineering Education
ISSN:
2332-368X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vasconcelos, Sonia (Ed.)

    Undergraduate research experiences benefit students by immersing them in the work of scientists and often result in increased interest and commitment to careers in the sciences. Expanding access to Research Experience for Undergraduate (REU) programs has the potential to engage more students in authentic research experiences earlier in their academic careers and grow and diversify the geoscience workforce. The Research Experience for Community College Students (RECCS) was one of the first National Science Foundation (NSF)-funded REU programs exclusively for 2-year college students. In this study, we describe findings from five years of the RECCS program and report on outcomes from 54 students. The study collected closed- and open-ended responses on post-program reflection surveys to analyze both student and mentor perspectives on their experience. Specifically, we focus on students’ self-reported growth in areas such as research skills, confidence in their ability to do research, and belonging in the field, as well as the mentors’ assessment of students’ work and areas of growth, and the impact of the program on students’ academic and career paths. In addition, RECCS alumni were surveyed annually to update data on their academic and career pursuits. Our data show that RECCS students learned scientific and professional skills throughout the program, developed a sense of identity as a scientist, and increased their interest in and excitement for graduate school after the program. Through this research experience, students gained confidence in their ability to “do” science and insight into whether this path is a good fit for them. This study contributes to an emerging body of data examining the impact of REU programs on community college students and encourages geoscience REU programs to welcome and support more community college students.

     
    more » « less
  2. The addition of research-focused experiences to undergraduate chemistry laboratory courses has been shown to bolster student learning, enhance student retention in STEM, and improve student self-identity as scientists. In the area of synthetic organic chemistry, the preparation of libraries of compounds with novel optical and electronic properties can provide a natural motivational goal for research-focused exercises that can be undertaken by individual students or collectively as a class. However, integrating such experiences into a community college teaching laboratory setting can face challenges imposed by the cost of supplies, limited laboratory space, and access to characterization facilities. To address these challenges, we have devised a sequence of inquiry-driven, research-focused laboratory exercises that can be readily integrated into an organic chemistry laboratory course with minimal cost. This sequence consists of a multistep synthesis of perylenediimide dyes that introduces students to advanced synthetic techniques, such as organometallic coupling reactions, column purification, and reactions performed under inert atmosphere. This high-yield, three-part synthesis can be easily varied by individual students or small groups within a class to form a broad library of compounds with potential utility for applications in light harvesting, molecular electronics, catalysis, and medicine. We describe the design of low-cost workstations for chemical synthesis under inert atmosphere and provide auxiliary lesson plans that can be used to expand the scope of a laboratory course beyond synthetic organic chemistry by introducing students to concepts in molecular spectroscopy. 
    more » « less
  3. ABSTRACT In 2015 the West Houston Center for Science & Engineering (WHC), Houston Community College, was awarded funding by the National Science Foundation (DMR) to develop a pilot materials science program, Research Experiences and Exploration in Materials Science (REEMS), focused on introducing materials science to aspiring science & engineering community college students. This multifaceted program provides an opportunity for students from a broad array of interests, backgrounds and ages to gain an appreciation for materials science with respect to their academic and career pursuits. Over the approximately four-year duration of the program, REEMS introduces materials science over the academic year through a voluntary seminar series, and, for a select group of students, participation in summer research experiences at collaborating universities. Academic year activities include conferences with the WHC-REEMS transfer advisor, seminars discussing an overview of materials science, the investigation of the roles of materials science in addressing pressing societal issues, and networking with graduate students, university upper division students, materials research faculty and professionals. This paper will provide an overview of the WHC – REEMS program synergies, impacts and partnership dynamics with participating universities: Rice University, the University of Houston, and the McGovern Medical School at the University of Texas Health Science Center-Houston. 
    more » « less
  4. null (Ed.)
    Student participation in undergraduate research programs has been linked to improved content knowledge, skills, and confidence. However, few research opportunities exist for community college students. This study explores the positive effects of a summer research program on three diverse cohorts of such students. The Transfer-to-Excellence Research Experiences for Undergraduate program is a hands-on summer research internship for California community college students. The program seeks to inspire students to complete a Bachelor's degree in science or engineering and primarily serves identities underrepresented in those fields. Analysis of mixed methods evaluation data shows that after participating in the program, community college students were better able to find scholarly resources, design ethical scientific experiments, conduct independent research, and analyze data. Additionally, participation in the program enhanced students' science identity and confidence to pursue further education and careers in science and engineering fields. 
    more » « less