Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironically and perhaps unfortunately, these deletions make users more susceptible to privacy violations by malicious actors who specifically hunt post deletions at large scale. The reason for such hunting is simple: deleting a post acts as a powerful signal that the post might be damaging to its owner. Today, multiple archival services are already scanning social media for these deleted posts. Moreover, as we demonstrate in this work, powerful machine learning models can detect damaging deletions at scale. Towards restraining such a global adversary against users' right to be forgotten, we introduce Deceptive Deletion, a decoy mechanism that minimizes the adversarial advantage. Our mechanism injects decoy deletions, hence creating a two-player minmax game between an adversary that seeks to classify damaging content among the deleted posts and a challenger that employs decoy deletions to masquerade real damaging deletions. We formalize the Deceptive Game between the two players, determine conditions under which either themore »
Deceptive Deletions for Protecting Withdrawn Posts on Social Platforms
Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironically and perhaps unfortunately, these deletions make users more susceptible to privacy violations by malicious actors who specifically hunt post deletions at large scale. The reason for such hunting is simple: deleting a post acts as a powerful signal that the post might be damaging to its owner. Today, multiple archival services are already scanning social media for these deleted posts. Moreover, as we demonstrate in this work, powerful machine learning models can detect damaging deletions at scale.
Towards restraining such a global adversary against users' right to be forgotten, we introduce Deceptive Deletion, a decoy mechanism that minimizes the adversarial advantage. Our mechanism injects decoy deletions, hence creating a two-player minmax game between an adversary that seeks to classify damaging content among the deleted posts and a challenger that employs decoy deletions to masquerade real damaging deletions. We formalize the Deceptive Game between the two players, determine conditions under which either the adversary more »
- Award ID(s):
- 1943364
- Publication Date:
- NSF-PAR ID:
- 10323551
- Journal Name:
- Proceedings of the 27th Annual Network and Distributed System Security Symposium
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hashtags can greatly facilitate content navigation and improve user engagement in social media. Meaningful as it might be, recommending hashtags for photo sharing services such as Instagram and Pinterest remains a daunting task due to the following two reasons. On the endogenous side, posts in photo sharing services often contain both images and text, which are likely to be correlated with each other. Therefore, it is crucial to coherently model both image and text as well as the interaction between them. On the exogenous side, hashtags are generated by users and different users might come up with different tags for similar posts, due to their different preference and/or community effect. Therefore, it is highly desirable to characterize the users’ tagging habits. In this paper, we propose an integral and effective hashtag recommendation approach for photo sharing services. In particular, the proposed approach considers both the endogenous and exogenous effects by a content modeling module and a habit modeling module, respectively. For the content modeling module, we adopt the parallel co-attention mechanism to coherently model both image and text as well as the interaction between them; for the habit modeling module, we introduce an external memory unit to characterize the historicalmore »
-
Introduction Social media has created opportunities for children to gather social support online (Blackwell et al., 2016; Gonzales, 2017; Jackson, Bailey, & Foucault Welles, 2018; Khasawneh, Rogers, Bertrand, Madathil, & Gramopadhye, 2019; Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). However, social media also has the potential to expose children and adolescents to undesirable behaviors. Research showed that social media can be used to harass, discriminate (Fritz & Gonzales, 2018), dox (Wood, Rose, & Thompson, 2018), and socially disenfranchise children (Page, Wisniewski, Knijnenburg, & Namara, 2018). Other research proposes that social media use might be correlated to the significant increase in suicide rates and depressive symptoms among children and adolescents in the past ten years (Mitchell, Wells, Priebe, & Ybarra, 2014). Evidence based research suggests that suicidal and unwanted behaviors can be promulgated through social contagion effects, which model, normalize, and reinforce self-harming behavior (Hilton, 2017). These harmful behaviors and social contagion effects may occur more frequently through repetitive exposure and modelling via social media, especially when such content goes “viral” (Hilton, 2017). One example of viral self-harming behavior that has generated significant media attention is the Blue Whale Challenge (BWC). The hearsay about this challenge is that individuals at allmore »
-
When users post on social media, they protect their privacy by choosing an access control setting that is rarely revisited. Changes in users' lives and relationships, as well as social media platforms themselves, can cause mismatches between a post's active privacy setting and the desired setting. The importance of managing this setting combined with the high volume of potential friend-post pairs needing evaluation necessitate a semi-automated approach. We attack this problem through a combination of a user study and the development of automated inference of potentially mismatched privacy settings. A total of 78 Facebook users reevaluated the privacy settings for five of their Facebook posts, also indicating whether a selection of friends should be able to access each post. They also explained their decision. With this user data, we designed a classifier to identify posts with currently incorrect sharing settings. This classifier shows a 317% improvement over a baseline classifier based on friend interaction. We also find that many of the most useful features can be collected without user intervention, and we identify directions for improving the classifier's accuracy.
-
Online harassment refers to a wide range of harmful behaviors, including hate speech, insults, doxxing, and non-consensual image sharing. Social media platforms have developed complex processes to try to detect and manage content that may violate community guidelines; however, less work has examined the types of harms associated with online harassment or preferred remedies to that harassment. We conducted three online surveys with US adult Internet users measuring perceived harms and preferred remedies associated with online harassment. Study 1 found greater perceived harm associated with non-consensual photo sharing, doxxing, and reputational damage compared to other types of harassment. Study 2 found greater perceived harm with repeated harassment compared to one-time harassment, but no difference between individual and group harassment. Study 3 found variance in remedy preferences by harassment type; for example, banning users is rated highly in general, but is rated lower for non-consensual photo sharing and doxxing compared to harassing family and friends and damaging reputation. Our findings highlight that remedies should be responsive to harassment type and potential for harm. Remedies are also not necessarily correlated with harassment severity—expanding remedies may allow for more contextually appropriate and effective responses to harassment.