skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: A Smart Walker for People with Both Visual and Mobility Impairment
In recent years, significant work has been done in technological enhancements for mobility aids (smart walkers). However, most of this work does not cover the millions of people who have both mobility and visual impairments. In this paper, we design and study four different configurations of smart walkers that are specifically targeted to the needs of this population. We investigated different sensing technologies (ultrasound-based, infrared depth cameras and RGB cameras with advanced computer vision processing), software configurations, and user interface modalities (haptic and audio signal based). Our experiments show that there are several engineering choices that can be used in the design of such assistive devices. Furthermore, we found that a holistic evaluation of the end-to-end performance of the systems is necessary, as the quality of the user interface often has a larger impact on the overall performance than increases in the sensing accuracy beyond a certain point.  more » « less
Award ID(s):
1852002
PAR ID:
10323630
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
10
ISSN:
1424-8220
Page Range / eLocation ID:
3488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human mobility modeling has many applications in location-based services, mobile networking, city management, and epidemiology. Previous sensing approaches for human mobility are mainly categorized into two types: stationary sensing systems (e.g., surveillance cameras and toll booths) and mobile sensing systems (e.g., smartphone apps and vehicle tracking devices). However, stationary sensing systems only provide mobility information of human in limited coverage (e.g., camera-equipped roads) and mobile sensing systems only capture a limited number of people (e.g., people using a particular smartphone app). In this work, we design a novel system Mohen to model human mobility with a heterogeneous sensing system. The key novelty of Mohen is to fundamentally extend the sensing coverage of a large-scale stationary sensing system with a small-scale sensing system. Based on the evaluation on data from real-world urban sensing systems, our system outperforms them by 35% and achieves a competitive result to an Oracle method. 
    more » « less
  2. Whenever a user interacts with a device, mechanical work is performed to actuate the user interface elements; the resulting energy is typically wasted, dissipated as sound and heat. Previous work has shown that many devices can be powered entirely from this otherwise wasted user interface energy. For these devices, wires and batteries, along with the related hassles of replacement and charging, become unnecessary and onerous. So far, these works have been restricted to proof-of-concept demonstrations; a specific bespoke harvesting and sensing circuit is constructed for the application at hand. The challenge of harvesting energy while simultaneously sensing fine-grained input signals from diverse modalities makes prototyping new devices difficult. To fill this gap, we present a hardware toolkit which provides a common electrical interface for harvesting energy from user interface elements. This facilitates exploring the composability, utility, and breadth of enabled applications of interaction-powered smart devices. We design a set of energy as input harvesting circuits, a standard connective interface with 3D printed enclosures, and software libraries to enable the exploration of devices where the user action generates the energy needed to perform the device's primary function. This exploration culminated in a demonstration campaign where we prototype several exemplar popular toys and gadgets, including battery-free Bop-It--- a popular 90s rhythm game, an electronic Etch-a-sketch, a Simon-Says-style memory game, and a service rating device. We run exploratory user studies to understand how generativity, creativity, and composability are hampered or facilitated by these devices. These demonstrations, user study takeaways, and the toolkit itself provide a foundation for building interactive and user-focused gadgets whose usability is not affected by battery charge and whose service lifetime is not limited by battery wear. 
    more » « less
  3. IoT devices like smart cameras and speakers provide convenience but can collect sensitive information within private spaces. While research has investigated user perception of comfort with information flows originating from these types of devices, little focus has been given to the role of the sensing hardware in influencing these sentiments. Given the proliferation of trusted execution environments (TEEs) across commodity- and server-class devices, we surveyed 1049 American adults using the Contextual Integrity framework to understand how the inclusion of cloud-based TEEs in IoT ecosystems may influence comfort with data collection and use. We find that cloud-based TEEs significantly increase user comfort across information flows. These increases are more pronounced for devices manufactured by smaller companies and show that cloud-based TEEs can bridge the previously-documented gulfs in user trust between small and large companies. Sentiments around consent, bystander data, and indefinite retention are unaffected by the presence of TEEs, indicating the centrality of these norms. 
    more » « less
  4. Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching, detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3% improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular data for them to train a machine learning model for their use cases, e.g., next location prediction. 
    more » « less
  5. null (Ed.)
    Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users’ behavior information during the aligning procedure and thus still suffer from the poor learning performance. In fact, we observe that social network alignment and behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment problem and user behavior analysis problem. We design a novel end-to-end framework named BANANA. In this framework, to leverage behavior analysis for social network alignment at the distribution level, we design an earth mover’s distance based alignment model to fuse users’ behavior information for more comprehensive user representations. To further leverage social network alignment for behavior analysis, in turn, we design a temporal graph neural network model to fuse behavior information in different social networks based on the alignment result. Two models above can work together in an end-to-end manner. Through extensive experiments on real-world datasets, we demonstrate that our proposed approach outperforms the state-of-the-art methods in the social network alignment task and the user behavior analysis task, respectively. 
    more » « less