Convolutional neural networks (CNN) are an emerging technique in modeling neural circuits and have been shown to converge to biologically plausible functionality in cortical circuits via task-optimization. This functionality has not been observed in CNN models of retinal circuits via task-optimization. We sought to observe this convergence in retinal circuits by designing a biologically inspired CNN model of a motion-detection retinal circuit and optimizing it to solve a motion-classification task. The learned weights and parameters indicated that the CNN converged to direction-sensitive ganglion and amacrine cells, cell types that have been observed in biology, and provided evidence that task-optimization ismore »
This content will become publicly available on January 1, 2023
Emergence of direction-selective retinal cell types in task-optimized deep learning models
Convolutional neural networks (CNNs), a class of deep learning models, have experienced recent success in modeling sensory cortices and retinal circuits through optimizing performance on machine learning tasks, otherwise known as task optimization. Previous research has shown task-optimized CNNs to be capable of providing explanations as to why the retina efficiently encodes natural stimuli and how certain retinal cell types are involved in efficient
encoding. In our work, we sought to use task-optimized CNNs as a means of explaining computational mechanisms responsible for motion-selective retinal circuits. We designed a biologically constrained CNN and optimized its performance on a motion-classification task. We drew inspiration from psychophysics, deep learning, and systems neuroscience literature
to develop a toolbox of methods to reverse engineer the computational mechanisms learned in our model. Through reverse engineering our model, we proposed a computational mechanism in which direction-selective ganglion cells and starburst amacrine cells, both experimentally observed retinal cell types, emerge in our model to discriminate among moving stimuli. This emergence suggests that direction-selective circuits in the retina are ecologically designed to robustly discriminate among moving stimuli. Our results and methods also provide a framework for how to build more interpretable deep learning models and how to understand them.
- Publication Date:
- NSF-PAR ID:
- 10324411
- Journal Name:
- Journal of computational biology
- Volume:
- 29
- Issue:
- 4
- Page Range or eLocation-ID:
- 370-381
- ISSN:
- 1066-5277
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Convolutional neural networks (CNN) are an emerging technique in modeling neural circuits and have been shown to converge to biologically plausible functionality in cortical circuits via task-optimization. This functionality has not been observed in CNN models of retinal circuits via task-optimization. We sought to observe this convergence in retinal circuits by designing a biologically inspired CNN model of a motion-detection retinal circuit and optimizing it to solve a motion-classification task. The learned weights and parameters indicated that the CNN converged to direction-sensitive ganglion and amacrine cells, cell types that have been observed in biology, and provided evidence that task-optimization ismore »
-
Sparse Coding Enables the Reconstruction of High-Fidelity Images and Video from Retinal Spike TrainsThe optic nerve transmits visual information to the brain as trains of discrete events, a low-power, low-bandwidth communication channel also exploited by silicon retina cameras. Extracting highfidelity visual input from retinal event trains is thus a key challenge for both computational neuroscience and neuromorphic engineering. Here, we investigate whether sparse coding can enable the reconstruction of high-fidelity images and video from retinal event trains. Our approach is analogous to compressive sensing, in which only a random subset of pixels are transmitted and the missing information is estimated via inference. We employed a variant of the Locally Competitive Algorithm to infermore »
-
Spatially distributed excitation and inhibition collectively shape a visual neuron’s receptive field (RF) properties. In the direction-selective circuit of the mammalian retina, the role of strong null-direction inhibition of On-Off direction-selective ganglion cells (On-Off DSGCs) on their direction selectivity is well-studied. However, how excitatory inputs influence the On-Off DSGC’s visual response is underexplored. Here, we report that On-Off DSGCs have a spatially displaced glutamatergic receptive field along their horizontal preferred-null motion axes. This displaced receptive field contributes to DSGC null-direction spiking during interrupted motion trajectories. Theoretical analyses indicate that population responses during interrupted motion may help populations of On-Off DSGCsmore »
-
Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insufficient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical tomore »