skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Psychophysical Validation of Interleaving Narrowband Tactile Stimuli to Achieve Broadband Effects
Current wearable haptic display technology is limited by the lack of broadband tactors capable of delivering rich haptic effects across the entire perceptible frequency range. Audio speakers are often used in laboratory studies as broadband tactors, but it is difficult to attach them to skin and maintain contact during movement. Commercially-available narrowband tactors are small, low in cost and power efficient. We investigate the idea of interleaving narrowband tactile stimuli to achieve broadband effects. Twelve participants performed pairwise discrimination of two stimulus alternatives using two broadband tactors. One alternative was a broadband vibration composed of the sum of a mid- and a high-frequency vibration, delivered by a single tactor. The other alternative consisted of the mid-frequency component delivered by one tactor and the high-frequency by the other. The upper arm was chosen for stimulation because the tactors can be placed within the two-point limen of the skin. The sensitivity index results were significantly below 1.0, the criterion for discrimination threshold, thereby confirming that broadband haptic effects can be achieved by placing narrowband tactors with mid and high resonant frequencies within the skin’s spatial resolution. We provide guidelines and examples of applying our findings to the design of wearable haptic displays.  more » « less
Award ID(s):
1954842
PAR ID:
10324663
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
World Haptics Conference 2021
Page Range / eLocation ID:
709 to 714
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the ubiquitous presence of tactile actuators (tactors) in mobile devices, there is a continuing need for more advanced tactors that can cover the entire frequency range of human tactile perception. Broadband tactors can increase information transmission and enrich sensory experience. The engineering challenges are multifold in that the ideal tactors should exhibit an effective bandwidth of at least 300 Hz, small form factor, robustness, power efficiency and low cost. For wearable applications, there are the additional challenges of ease of mounting and maintaining adequate skin contact during body movements. We propose an approach to interleave narrowband tactile stimuli to achieve broadband effects, taking advantage of the limited spatial resolution of the skin on the torso and limbs. Three psychophysical experiments were conducted to assess the validity of this approach. Participants performed pairwise discriminations of two broadband stimuli delivered using one or two tactors. The broadband stimuli consisted of one mid-frequency and one high-frequency component delivered through one tactor by mixing the two components, or through two tactors (one component per tactor). The first two experiments revealed extraneous cues such as localization and mutual masking of mid- and high-frequency components that were subsequently eliminated in the third experiment. Results from 12 participants confirmed that performance on pairwise comparisons was below the discrimination threshold, confirming that broadband haptic effects can be achieved through narrowband tactors placed within the skin’s two-point limen. 
    more » « less
  2. Vibration is ubiquitous as a mode of haptic communication, and is used widely in handheld devices to convey events and notifications. The miniaturization of electromechanical actuators that are used to generate these vibrations has enabled designers to embed such actuators in wearable devices, conveying vibration at the wrist and other locations on the body. However, the rigid housings of these actuators mean that such wearables cannot be fully soft and compliant at the interface with the user. Fluidic textile-based wearables offer an alternative mechanism for haptic feedback in a fabric-like form factor. To our knowledge, fluidically driven vibrotactile feedback has not been demonstrated in a wearable device without the use of valves, which can only enable low-frequency vibration cues and detract from wearability due to their rigid structure. We introduce a soft vibrotactile wearable, made of textile and elastomer, capable of rendering high-frequency vibration. We describe our design and fabrication methods and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanical hysteresis. We demonstrate that the frequency and amplitude of vibration produced by our device can be varied based on changes in the input pressure, with 0.3 to 1.4 bar producing vibrations that range between 160 and 260 Hz at 13 to 38 g, the acceleration due to gravity. Our design allows for controllable vibrotactile feedback that is comparable in frequency and outperforms in amplitude relative to electromechanical actuators, yet has the compliance and conformity of fully soft wearable devices. 
    more » « less
  3. Resonant frequency skin stretch uses cyclic lateral skin stretches matching the skin’s resonant frequency to create highly noticeable stimuli, signifying a new approach for wearable haptic stimulation. Four experiments were performed to explore biomechanical and perceptual aspects of resonant frequency skin stretch. In the first experiment, effective skin resonant frequencies were quantified at the forearm, shank, and foot. In the second experiment, perceived haptic stimuli were characterized for skin stretch actuations across a spectrum of frequencies. In the third experiment, perceived haptic stimuli were characterized for different actuator masses. In the fourth experiment, haptic classification ability was determined as subjects differentiated haptic stimulation cues while sitting, walking, and jogging. Results showed that subjects perceived stimulations at, above, and below the skin’s resonant frequency differently: stimulations lower than the skin resonant frequency felt like distinct impacts, stimulations at the skin resonant frequency felt like cyclic skin stretches, and stimulations higher than the skin resonant frequency felt like standard vibrations. Subjects successfully classified stimulations while sitting, walking, and jogging, perceived haptic stimuli was affected by actuator mass, and classification accuracy decreased with increasing speed, especially for stimulations at the shank. This work could facilitate more widespread use of wearable skin stretch. Potential applications include gaming, medical simulation, and surgical augmentation, and for training to reduce injury risk or improve sports performance. 
    more » « less
  4. Abstract Articular cartilage is a thin layer of a solid matrix swollen by fluid, and it protects joints from damage via poroviscoelastic damping. Our previous experimental and simulation studies showed that cartilage-like poroviscoelastic damping could widen the range of damping methods in a low-frequency range (<100 Hz). Thus, the current study aimed to realize cartilage-like damping capacity by single- and two-indenter–foam poroviscoelastic dampers in a low-frequency range. Multiple single-indenter–foam dampers were designed by combining foam sheets with different pore diameters and indenters with different radii. Their damping capacity was investigated by dynamic mechanical analysis in a frequency range of 0.5–100 Hz. Single-indenter–foam dampers delivered peak damping frequencies that depended on the foam’s pore diameter and characteristic diffusion length (contact radii). Those dampers maximize the damping capacity at the desired frequency (narrowband performance). A mechanical model combined with simple scaling laws was shown to relate poroelasticity to the peak damping frequencies reasonably well. Finally, combinations of single-indenter–foam dampers were optimized to obtain a two-indenter–foam damper that delivered nearly rate-independent damping capacity within 0.5–100 Hz (broadband performance). These findings suggested that cartilage-like poroviscoelastic dampers can be an effective mean of passive damping for narrowband and broadband applications. 
    more » « less
  5. Vibration is a widely used mode of haptic communication, as vibrotactile cues provide salient haptic notifications to users and are easily integrated into wearable or handheld devices. Fluidic textile-based devices offer an appealing platform for the incorporation of vibrotactile haptic feedback, as they can be integrated into clothing and other conforming and compliant wearables. Fluidically driven vibrotactile feedback has primarily relied on valves to regulate actuating frequencies in wearable devices. The mechanical bandwidth of such valves limits the range of frequencies that can be achieved, particularly in attempting to reach the higher frequencies realized with electromechanical vibration actuators ( > 100 Hz). In this paper, we introduce a soft vibrotactile wearable device, constructed entirely of textiles and capable of rendering vibration frequencies between 183 and 233 Hz with amplitudes ranging from 23 to 114 g . We describe our methods of design and fabrication and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanofluidic instability. Our design allows for controllable vibrotactile feedback that is comparable in frequency and greater in amplitude relative to state-of-the-art electromechanical actuators while offering the compliance and conformity of fully soft wearable devices. 
    more » « less