This content will become publicly available on April 1, 2023
- Publication Date:
- NSF-PAR ID:
- 10325580
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 28
- Issue:
- 2
- Page Range or eLocation-ID:
- 404 to 411
- ISSN:
- 1431-9276
- Sponsoring Org:
- National Science Foundation
More Like this
-
The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern X-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big datasets when a comprehensive analysis is beyond human reach. We report the development of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature clustering (X-TEC), that can automatically extract charge density wave order parameters and detect intraunit cell ordering and its fluctuations from a series of high-volume X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC with diffraction data on a quasi-skutterudite family of materials, (Ca x Sr 1 − x ) 3 Rh 4 Sn 13 , where a quantum critical point is observed as a function of Ca concentration. We apply X-TEC to XRD data on the pyrochlore metal, Cd 2 Re 2 O 7 , to investigate its two much-debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic-scale knowledge can be gained when human researchers connect the X-TEC results tomore »
-
Abstract Predicting the synthesizability of hypothetical crystals is challenging because of the wide range of parameters that govern materials synthesis. Yet, exploring the exponentially large space of novel crystals for any future application demands an accurate predictive capability for synthesis likelihood to avoid a haphazard trial-and-error. Typically, benchmarks of synthesizability are defined based on the energy of crystal structures. Here, we take an alternative approach to select features of synthesizability from the latent information embedded in crystalline materials. We represent the atomic structure of crystalline materials by three-dimensional pixel-wise images that are color-coded by their chemical attributes. The image representation of crystals enables the use of a convolutional encoder to learn the features of synthesizability hidden in structural and chemical arrangements of crystalline materials. Based on the presented model, we can accurately classify materials into synthesizable crystals versus crystal anomalies across a broad range of crystal structure types and chemical compositions. We illustrate the usefulness of the model by predicting the synthesizability of hypothetical crystals for battery electrode and thermoelectric applications.
-
Atomic force microscopes (AFMs) are used not only to image with nanometer-scale resolution, but also to nanofabricate structures on a surface using methods such as dip-pen nanolithography (DPN). DPN involves using the tip of the AFM to deposit a small amount of material on the surface. Typically, this process is done in open loop, leading to large variations in the amount of material transferred. One of the first steps to closing this loop is to be able to accurately and rapidly measure the amount of deposition. This can be done by measuring the change in the resonance frequency of the cantilever before and after a write as that shift is directly related to the change in mass on the cantilever. Currently, this is done using a thermal-based system identification, a technique which uses the natural Brownian excitation of the cantilever as a white noise excitation combined with a fast Fourier transform to extract a Bode plot. However, thermal-based techniques do not have a good signal to noise ratio at typical cantilever resonance frequencies and thus do not provide the needed resolution in the DPN application. Here we develop a scheme that iteratively uses a stepped-sine approach. At each step ofmore »
-
Abstract Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynamics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic columns in materials undergoing structural dynamics. To address this challenge, we propose a noise-robust, processing approach based on blob detection, which has been previously established for identifying objects in images in the community of computer vision. In particular, a blob detection algorithm has been tailored to deal with noisy TEM image series from nanoparticle systems. In the presence of high noise content, our blob detection approach is demonstrated to outperform the results of other algorithms, enabling the determination of atomic column position and its intensity with a higher degree of precision.
-
The quantification of strain in three-dimensions is a powerful tool for structural investigations, allowing for the direct consideration of the localization and delocalization of deformation in space, and potentially, in time. Furthermore, characterization of the distribution of strain in three-dimensions may yield information concerning large-scale kinematics that may not be obtained through the traditional use of asymmetric fabrics. In this contribution, we present a streamlined methodology for the calculation of three-dimensional strain using objective approaches that allow for consideration of error assessment. This approach begins with the collection of suitable samples for strain analysis following either the Rf/ϕ or normalized Fry techniques. Samples are cut along three mutually perpendicular orientations using a set of jigs designed for use in a large oil saw. Cut faces are polished and scanned in high resolution. Scanned images are processed following a standard convention. The boundaries of objects are outlined as “Regions Of Interest” in the open-source program ImageJ and saved. A script reads the saved files of object outlines and statistically fits an ellipse to each digitized object. The parameters of fitted objects are then extracted and saved. Two-dimensional strain analyses are completed following the normalized Fry method or the Rf/ϕ technique followingmore »