In this study, the amphiphilic salt lithium trifluoromethanesulfonylimide octadecane (C18LiTFSI) was used as a basis to investigate the effects of anion density and cation coordination sites within blended electrolytes with strong ionic aggregation. C18LiTFSI was previously reported as a single-component, ion-condensed electrolyte with a wide layered liquid crystalline phase regime. Three additive molecules with varyingly sized polar sulfonyl groups attached to an octodecane-tail were synthesized and mixed with C18LiTFSI. The thermal properties, morphology, and ionic conductivity of the blended electrolytes were characterized. It was found that the blended electrolytes exhibited layered liquid crystalline morphology over a narrower temperature range than the pure salt, and the ionic conductivity of the blended liquid crystalline electrolytes were generally lower than that of the pure salt. Surprising, the additives were found to have the greatest effect on the bulk ionic conductivity of the semicrystalline phase of the electrolytes. Addition of minor fractions of methylsulfonyloctadecane to C18LiTFSI resulted in increases in conductivity of over two orders of magnitude at room temperature, while addition of ethylsulfonyloctadecane or isopropylsulfonyloctadecane with the larger head group resulted in decreased ionic conductivity over the entire composition space and temperature range investigated.
more »
« less
Ionic Liquid Solutions Show Anomalous Crowding Behavior at an Electrode Surface
X-ray reflectivity was used to study the several-nanometer-thick “crowded” layers that form at the interfaces between a planar electrode and concentrated solutions of ionic liquids. The ionic liquid [P14,6,6,6]+[NTf2]− was dissolved in either strongly polar propylene carbonate or weakly polar dimethyl carbonate. In the range of 19–100 vol % ionic liquid, between working electrode potentials +2 and +2.75 V, uniform 2–7 nm thick interfacial layers were observed. These layers are not pure anions but contain three to five times as many anions as cations and about the same percentage of solvent as the bulk solution. On the other side of the layer, the density is that of the bulk solution. These features are inconsistent with a picture of the crowded layer as a region of pure, close-packed counterions. Not only the layer thickness but also the charge density decrease with increasing dilution at any given applied voltage. This appears to indicate, counterintuitively, that a thinner layer with lower net charge density will screen an electric field as effectively as a thicker layer with higher charge density.
more »
« less
- Award ID(s):
- 1665255
- PAR ID:
- 10325728
- Date Published:
- Journal Name:
- Langmuir
- ISSN:
- 0743-7463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrochemical double-layer capacitors (EDLCs) provide high power density and long cycle life energy storage. This work examines the use of inexpensive, raw coal char as an electrode material for supercapacitors. The effect of electrolyte composition on the performance of coal char supercapacitors is explored for the first time to determine the relative contributions of double-layer capacitance vs. faradaic reactions on total charge storage. Six electrolytes are examined with coal char electrodes, including: four aqueous electrolytes (0.5 M H 2 SO 4 , 6 M KOH, 0.5 M Na 2 SO 4 , 4 M LiNO 3 ); a water-in-salt electrolyte using 13 m NaClO 4 ; and an ionic liquid electrolyte (1-butyl-3-methylimidazolium tetrafluoroborate in acetonitrile). Voltage range, specific capacitance, electrochemical impedance, and charge–discharge characteristics of the coal char in the different electrolytes are characterized. The results indicate that neutral aqueous, water-in-salt, and ionic liquid electrolytes present a charging/discharging process approaching ideal EDLC behavior. The study provides insight into the optimal electrolyte composition for use with coal char electrodes and contributes to the current understanding of electrode-electrolyte interactions in carbon supercapacitors.more » « less
-
Size-driven transition of an antiferroelectric into a polar ferroelectric or ferrielectric state is a strongly debated issue from both experimental and theoretical perspectives. While critical thickness limits for such transitions have been explored, a bottom-up approach in the ultrathin limit considering few atomic layers could provide insight into the mechanism of stabilization of the polar phases over the antipolar phase seen in bulk PbZrO3. Here, we use first-principles density functional theory to predict the stability of polar phases in Pt/PbZrO3/Pt nanocapacitors. In a few atomic layer thick slabs of PbZrO3 sandwiched between Pt electrodes, we find that the polar phase originating from the well established R3c phase of bulk PbZrO3 is energetically favorable over the antipolar phase originating from the Pbam phase of bulk PbZrO3. The famous triple-well potential of antiferroelectric PbZrO3 is modified in the nanocapacitor limit in such a way as to swap the positions of the global and local minima, stabilizing the polar phase relative to the antipolar one. The size effect is decomposed into the contributions from dimensionality reduction, surface charge screening, and interfacial relaxation, which reveals that it is the creation of well-compensated interfaces that stabilizes the polar phases over the antipolar ones in nanoscale PbZrO3.more » « less
-
Abstract Lithium-ion batteries (LIBs) have solidified their position as primary energy storage solutions for applications ranging from portable electronics to electric vehicles. As power-intensive applications expand, achieving fast charging/discharging performance is increasingly critical for high-energy-density batteries. However, the increased thickness of electrodes in LIBs presents significant challenges for charge (Li⁺ and electron) transfer kinetics, as longer charge migration distances hinder fast charging and discharging performance. Enormous efforts have been made to summarize advancements in materials chemistry—optimizing ionic pathways and crystal structure—to enhance Li⁺ transfer within the bulk of electrode materials. Yet, materials design and modifications fall short of fully addressing Li+and electron transport limitations in thick electrodes. Despite the significance of potentially offering a solution to these constraints, the strategic engineering of electrode architecture has been rarely discussed. In this mini-review, we highlight recent innovations in electrode structural design for fast-charging applications, examining gradient architectures, low-tortuosity structures, and novel current collector designs. By exploring these advanced approaches and offering perspectives on future developments, we aim to promote further advancements toward achieving high-energy-density, fast-charging LIBs.more » « less
-
In this study, the use of a closo-borate salt as an electrolyte for lithium-ion batteries (LIB) was evaluated in a series of solvent systems. The lithium closo-borate salts are a unique class of halogen-free salts that have the potential to offer some advantages over the halogenated salts currently employed in commercially available LIB due to their chemical and thermal stability. To evaluate this concept, three different solvent systems were prepared with a lithium closo-borate salt to make a liquid electrolyte (propylene carbonate, ethylene carbonate:dimethyl carbonate, and 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide). The closo-borate containing electrolytes were then compared by utilizing them with three different electroactive electrode materials. Their cycle stability and performance at various charge/discharge rates was also investigated. Based on the symmetrical cell and galvanostaic cycling studies it was determined that the carbonate based liquid electrolytes performed better than the ionic liquid electrolyte. This work demonstrates that halogen free closo-borate salts are interesting candidates and worthy of further investigation as lithium salts for LIB.more » « less
An official website of the United States government

