skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Storytelling as an Approach to Researching, Teaching and Learning about Complex Community-based Socio-Scientific Problems
Resolving global problems (e.g., climate change) requires decision-makers who can see problems through an intersection of disciplines and perspectives, and identify the root causes of disparate and inequitable outcomes between groups. As such, there is an urgent need to develop systems-thinking skills in learners so that they are able to address the interdisciplinarity and intersectionality fundamental to complex socio- scientific challenges when acting as decision-makers. This session highlights how storytelling can be used as a pedagogical approach to building systems-thinking and collaboration skills in informal learning environments. Research presented include examples of how podcasts, graphic novels, and theatre can be used as storytelling approaches. This interactive session brings together scholars who work in community- based partnerships around North America, India, and Bhutan.  more » « less
Award ID(s):
1852687
PAR ID:
10326471
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As future decision-makers, students must develop interdisciplinary, systems thinking skills to make effective management decisions; however, systems thinking remains challenging for many students. Here, we use the Food-Energy-Water (FEW) Nexus as a framework to examine how drawings can help students cultivate systems thinking skills. Drawings can be tools to make implicit mental models of systems connections explicit for instructors to better comprehend student learning. Our goal was to understand how drawing can help students make connections across systems compared to using only verbal explanations. In 2021, we interviewed undergraduates, asking them to draw and verbally explain the FEW Nexus. Analysis revealed that student drawings showed an increase in the number of connections that half of students could describe when compared to verbal-only explanations. Instructors may benefit from this study by recognizing areas where students might struggle to understand FEW Nexus connections, where additional course emphasis is needed, and how drawings can help assess student learning. 
    more » « less
  2. This session will highlight innovations in assessing K-12 computational thinking (CT). As an emerging construct, the definition of CT is generally characterized as the thinking processes involved in formulating problems and their solutions in a form that can be effectively carried out by an information-processing agent (Wing, 2006). The thinking skills involved in this process include abstraction, decomposition, evaluation, pattern recognition, logic, and algorithm design (Grover & Pea, 2017). This session brings together researchers representing four innovative approaches to assessing CT, each of which provides teachers with useful information to guide instruction. Each presentation will describe the operational definition of CT for the assessment, development and validation work, and how teachers use assessment results to guide K-12 instruction. 
    more » « less
  3. Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systems thinking and developing a more comprehensive definition of systems thinking that includes both constituent parts and contextual elements of a system will help students recognize the relevance and value of these other elements of engineering work and support full participation in engineering by a diverse group of students. We provide an overview of our study, in which we are examining systems thinking across a range of expertise to develop a scenario-based assessment tool that educators and researchers can use to evaluate engineering students’ systems thinking competence. Consistent with the aforementioned need to define and study systems thinking in a comprehensive, inclusive manner, we begin with a definition of systems thinking as a holistic approach to problem solving in which linkages and interactions of the immediate work with constituent parts, the larger sociocultural context, and potential impacts over time are identified and incorporated into decision making. In our study, we seek to address two key questions: 1) How do engineers of different levels of education and experience approach problems that require systems thinking? and 2) How do different types of life, educational, and work experiences relate to individuals’ demonstrated level of expertise in solving systems thinking problems? Our study is comprised of three phases. The first two phases include a semi-structured interview with engineering students and professionals about their experiences solving a problem requiring systems thinking and a think-aloud interview in which participants are asked to talk through how they would approach a given engineering scenario and later reflect on the experiences that inform their thinking. Data from these two phases will be used to develop a written assessment tool, which we will test by administering the written instrument to undergraduate and graduate engineering students in our third study phase. Our paper describes our study design and framing and includes preliminary findings from the first phase of our study. 
    more » « less
  4. Digital storytelling, which combines traditional storytelling with digital tools, has seen growing popularity as a means of creating motivating problem-solving activities in K-12 education. Though an attractive potential solution to integrating language arts skills across topic areas such as computational thinking and science, better understanding of how to structure and support these activities is needed to increase adoption by teachers. Building on prior research on block-based programming for interactive storytelling, we present initial results from a study of 28 narrative programs created by upper elementary students that were collected in both classroom and extracurricular contexts. The narrative programs are evaluated across multiple dimensions to better understand the types of narrative programs being created by the students, characteristics of the students who created the narratives, and what types of support could most benefit the students in their narrative program construction. In addition to analyzing the student-created narrative programs, we also provide recommendations for promising system-generated and instructor-led supports. 
    more » « less
  5. Systems thinking is a skill that enables students to grapple with complex problems, often to which there is no clear problem definition or solution, there are many stakeholders, and there are many systems involved (e.g. sociotechnical or socioecological systems). Fostering the development of systems thinking skills is crucial as the problems students encounter in their lives, and in formal and informal educational settings, are increasingly complex. Ongoing research points to the need for more domain-general tools to assess systems thinking in a variety of K-12 settings. Many existing tools or methods used to assess systems thinking in K-12 are often domain specific (e.g. the water cycle in environmental science) and do not always transfer well to more complex problems across content areas. Furthermore, grounding the development of systems thinking skills in the locally relevant contexts that inform and affect students' day-to-day lives also offers the opportunity for students to engage in problems they find interesting and in which they may connect more deeply. This work-in-progress paper presents the development of a general tool informed by existing research in systems thinking and pedagogical practices in K-12 settings. The initial tool development is based on an existing published tool that has been used in undergraduate settings that challenges students to consider an ill-structured problem based on a real world scenario, in which a rubric was defined and applied to measure different systems thinking competencies. The existing tool measures students' ability to identify various contextual and technical aspects of a problem, to identify various stakeholders and stakeholder needs, and to identify short-term goals, long-term goals, and unintended consequences of potential solutions. Knowledge and experience from the development of this tool will be used to pilot an assessment with K-12 students to measure their systems thinking skills in problems that are relevant to them and their experiences. 
    more » « less