skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: COVID-GAN+: Estimating Human Mobility Responses to COVID-19 through Spatio-temporal Generative Adversarial Networks with Enhanced Features
Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN.  more » « less
Award ID(s):
1942680 1952085 2105133
NSF-PAR ID:
10326802
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
13
Issue:
2
ISSN:
2157-6904
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality. 
    more » « less
  2. COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.

     
    more » « less
  3. Abstract

    A better understanding of various patterns in the coronavirus disease 2019 (COVID-19) spread in different parts of the world is crucial to its prevention and control. Motivated by the previously developed Global Epidemic and Mobility (GLEaM) model, this paper proposes a new stochastic dynamic model to depict the evolution of COVID-19. The model allows spatial and temporal heterogeneity of transmission parameters and involves transportation between regions. Based on the proposed model, this paper also designs a two-step procedure for parameter inference, which utilizes the correlation between regions through a prior distribution that imposes graph Laplacian regularization on transmission parameters. Experiments on simulated data and real-world data in China and Europe indicate that the proposed model achieves higher accuracy in predicting the newly confirmed cases than baseline models.

     
    more » « less
  4. null (Ed.)
    Abstract The COVID-19 outbreak is a global pandemic declared by the World Health Organization, with rapidly increasing cases in most countries. A wide range of research is urgently needed for understanding the COVID-19 pandemic, such as transmissibility, geographic spreading, risk factors for infections, and economic impacts. Reliable data archive and sharing are essential to jump-start innovative research to combat COVID-19. This research is a collaborative and innovative effort in building such an archive, including the collection of various data resources relevant to COVID-19 research, such as daily cases, social media, population mobility, health facilities, climate, socioeconomic data, research articles, policy and regulation, and global news. Due to the heterogeneity between data sources, our effort also includes processing and integrating different datasets based on GIS (Geographic Information System) base maps to make them relatable and comparable. To keep the data files permanent, we published all open data to the Harvard Dataverse ( https://dataverse.harvard.edu/dataverse/2019ncov ), an online data management and sharing platform with a permanent Digital Object Identifier number for each dataset. Finally, preliminary studies are conducted based on the shared COVID-19 datasets and revealed different spatial transmission patterns among mainland China, Italy, and the United States. 
    more » « less
  5. null (Ed.)
    The policy induced decline of human mobility has been recognised as effective in controlling the spread of COVID-19, especially in the initial stage of the outbreak, although the relationship among mobility, policy implementation, and virus spread remains contentious. Coupling the data of confirmed COVID-19 cases with the Google mobility data in Australia, we present a state-level empirical study to: (1) inspect the temporal variation of the COVID-19 spread and the change of human mobility adherent to social restriction policies; (2) examine the extent to which different types of mobility are associated with the COVID-19 spread in eight Australian states/territories; and (3) analyse the time lag effect of mobility restriction on the COVID-19 spread. We find that social restriction policies implemented in the early stage of the pandemic controlled the COVID-19 spread effectively; the restriction of human mobility has a time lag effect on the growth rates of COVID-19, and the strength of the mobility-spread correlation increases up to seven days after policy implementation but decreases afterwards. The association between human mobility and COVID-19 spread varies across space and time and is subject to the types of mobility. Thus, it is important for government to consider the degree to which lockdown conditions can be eased by accounting for this dynamic mobility-spread relationship. 
    more » « less