 NSFPAR ID:
 10327808
 Date Published:
 Journal Name:
 Forum of Mathematics, Pi
 Volume:
 10
 ISSN:
 20505086
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

We study the focusing NLS equation in $R\mathbb{R}^N$ in the masssupercritical and energysubcritical (or intercritical ) regime, with $H^1$ data at the massenergy threshold $\mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blowup occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixedpoint argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.more » « less

Abstract Let
denote the matrix multiplication tensor (and write$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$ ), and let$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$ denote the determinant polynomial considered as a tensor. For a tensor$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$ T , let denote its border rank. We (i) give the first handcheckable algebraic proof that$\underline {\mathbf {R}}(T)$ , (ii) prove$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$ and$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$ , where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$ , (iii) prove$M_{\langle 2\rangle }$ , (iv) prove$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$ , improving the previous lower bound of$\underline {\mathbf {R}}(\operatorname {det}_3)=17$ , (v) prove$12$ for all$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$ , where previously only$\mathbf {n}\geq 25$ was known, as well as lower bounds for$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$ , and (vi) prove$4\leq \mathbf {n}\leq 25$ for all$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$ , where previously only$\mathbf {n} \ge 18$ was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors.$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$ The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called
border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensorT and an integerr , in a finite number of steps, either outputs that there is no border rankr decomposition forT or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable whenT has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory. 
We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $n\geqslant 3$ , $\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$ $=f(x)$ almost everywhere with respect to Lebesgue measure for all $f\in H^{s}(\mathbb{R}^{n})$ provided that $s>(n+1)/2(n+2)$ . The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.more » « less

Abstract Given a suitable solution
V (t ,x ) to the Korteweg–de Vries equation on the real line, we prove global wellposedness for initial data . Our conditions on$$u(0,x) \in V(0,x) + H^{1}(\mathbb {R})$$ $u(0,x)\in V(0,x)+{H}^{1}\left(R\right)$V do include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles satisfy our hypotheses. In particular, we can treat localized perturbations of the muchstudied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ $V(0,x)\in {H}^{5}(R/Z)$https://doi.org/10.1088/13616544/ac37f5 ) we show that smooth steplike initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4 ) where . In that setting, it is known that$$V\equiv 0$$ $V\equiv 0$ is sharp in the class of$$H^{1}(\mathbb {R})$$ ${H}^{1}\left(R\right)$ spaces.$$H^s(\mathbb {R})$$ ${H}^{s}\left(R\right)$ 
Abstract We study the following mean field equation on a flat torus $T:=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau )$: $$\begin{equation*} \varDelta u + \rho \left(\frac{e^{u}}{\int_{T}e^u}\frac{1}{T}\right)=0, \end{equation*}$$where $ \tau \in \mathbb{C}, \mbox{Im}\ \tau>0$, and $T$ denotes the total area of the torus. We first prove that the solutions are evenly symmetric about any critical point of $u$ provided that $\rho \leq 8\pi $. Based on this crucial symmetry result, we are able to establish further the uniqueness of the solution if $\rho \leq \min{\{8\pi ,\lambda _1(T)T\}}$. Furthermore, we also classify all onedimensional solutions by showing that the level sets must be closed geodesics.