skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polysalt ligands achieve higher quantum yield and improved colloidal stability for CsPbBr 3 quantum dots
Colloidal lead halide perovskite quantum dots (PQDs) are relatively new semiconductor nanocrystals with great potential for use in optoelectronic applications. They also present a set of new scientifically challenging fundamental problems to investigate and understand. One of them is to address the rather poor colloidal and structural stability of these materials under solution phase processing and/or transfer between solvents. In this contribution, we detail the synthesis of a new family of multi-coordinating, bromide-based polysalt ligands and test their ability to stabilize CsPbBr 3 nanocrystals in polar solutions. The ligands present multiple salt groups involving quaternary cations, namely ammonium and imidazolium as anchors for coordination onto PQD surfaces, along with several alkyl chains with varying chain length to promote solubilization in various conditions. The ligands provide a few key benefits including the ability to repair damaged surface sites, allow rapid ligand exchange and phase transfer, and preserve the crystalline structure and morphology of the nanocrystals. The polysalt-coated PQDs exhibit near unity PLQY and significantly enhanced colloidal stability in ethanol and methanol.  more » « less
Award ID(s):
2005079 1508501
PAR ID:
10327885
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
39
ISSN:
2040-3364
Page Range / eLocation ID:
16705 to 16718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As surface ligands play a critical role in the colloidal stability and optoelectronic properties of semiconductor nanocrystals, we used solution NMR experiments to investigate the surface coordination chemistry of Ge nanocrystals synthesized by a microwave-assisted reduction of GeI 2 in oleylamine. The as-synthesized Ge nanocrystals are coordinated to a fraction of strongly bound oleylamide ligands (with covalent X-type Ge–NHR bonds) and a fraction of more weakly bound (or physisorbed) oleylamine, which readily exchanges with free oleylamine in solution. The fraction of strongly bound oleylamide ligands increases with increasing synthesis temperature, which also correlates with better colloidal stability. Thiol and carboxylic acid ligands bind to the Ge nanocrystal surface only upon heating, suggesting a high kinetic barrier to surface binding. These incoming ligands do not displace native oleylamide ligands but instead appear to coordinate to open surface sites, confirming that the as-prepared nanocrystals are not fully passivated. These findings will allow for a better understanding of the surface chemistry of main group nanocrystals and the conditions necessary for ligand exchange to ultimately maximize their functionality. 
    more » « less
  2. A general method is developed for removal of native nonpolar oleate ligands from colloidal metal oxide nanocrystals of varying morphologies and compositions. Ligand stripping occurs by phase transfer into potassium hydroxide solution, yielding stable aqueous dispersions with little nanocrystal aggregation and without significant changes to the nanomaterials’ physical or chemical properties. This method enables facile fabrication of conductive films of ligand-free nanocrystals. 
    more » « less
  3. Abstract Ceria (CeO 2 ) possesses a distinctive redox property due to a reversible conversion to its nonstoichiometric oxide and has been considered as a promising catalyst in the oxidative coupling of methane. Since a heterogeneously catalytic process usually takes place only on the surface of catalysts, it is reasonably expected that the performance of a catalyst, such as CeO 2 , highly relies on its size- and shape-dependent surface structure. We report our recent progress in achieving exclusive crystal facet-terminated CeO 2 nanocrystals using a shape-controlled synthesis protocol in a one-pot colloidal system. We modified a two-phase solvothermal approach to fabricate cubic and truncated octahedral CeO 2 nanocrystals with a size-control. During the two-phase solvothermal process, we propose that the Ce-precursors transfer from the aqueous layer to the interface of the organic phase, promoted by the capping ligands (as known as phase-transfer catalysts), for the oxidation and nucleation, and subsequently form CeO 2 nanocrystals in the organic layer. As different capping ligands favor binding on diverse crystal facets, tuning the composition of the capping ligand with a precise control could generate nanocrystals that are dominated by a single type of facets with a relatively narrow size distribution. 
    more » « less
  4. Post-synthetic phase transfer ligand exchange has been established as a simple, reliable, and versatile method for the synthesis of chiral, optically active colloidal nanocrystals displaying circular dichroism (CD) and circularly polarized luminescence (CPL). Herein we present a water-free and purification-free cyclohexane → methanol ligand exchange system that led to the synthesis of stable, non-aggregating chiral and fluorescent cadmium sulfide quantum dots (CdS QDs). Absorption and emission studies revealed that the carboxylate capping ligands can tune the band gap by up to 65 meV as well as control the band gap and deep trap emission pathways. The CD data revealed that the addition of a 2nd stereogenic center did not automatically lead to an increase of the CD anisotropy of QDs, but rather match/mismatch cooperativity effects must be considered in the transfer of the chirality from the capping ligands to the achiral nanocrystals. Variation in position of the functional groups as well as the chemical identity of the functional groups impacted both the shape and anisotropy of the induced CD spectra and revealed the importance of the functional groups’ coordination and polarity on the binding geometry and induced chiroptical properties. Finally, we describe the first example where CD spectra of QDs capped with the same ligand and dissolved in the same solvent displayed very different spectral profiles. This work provides deeper insight into induced CD of QDs and paves the path to rational design of chiral nanomaterials. 
    more » « less
  5. Large and faceted nanoparticles, such as gold bipyramids, presently require synthesis using alkyl ammonium halide ligands in aqueous conditions to stabilize the structure, which impedes subsequent transfer and suspension of such nanoparticles in low polarity solvents despite success with few nanometer gold nanoparticles of shapes such as spheres. Phase transfer methodologies present a feasible avenue to maintain colloidal stability of suspensions and move high surface energy particles into organic solvent environments. Here, we present a method to yield stable suspensions of gold bipyramids in low-polarity solvents, including methanol, dimethylformamide, chloroform, and toluene, through the requisite combination of two capping agents and the presence of a co-solvent. By utilizing PEG-SH functionalization for stability, dodecanethiol (DDT) as the organic-soluble capping agent, and methanol to aid in the phase transfer, gold bipyramids with a wide-range of aspect ratios and sizes can be transferred between water and chloroform readily and maintain colloidal stability. Subsequent transfer to various organic and low-polarity solvents is then demonstrated for the first time. 
    more » « less