We present the properties and performance of fluorescent waveguide lattices as coatings for solar cells, designed to address the significant mismatch between the solar cell’s spectral response range and the solar spectrum. Using arrays of microscale visible light optical beams transmitted through photoreactive polymer resins comprising acrylate and silicone monomers and fluorescein o,o′-dimethacrylate comonomer, we photopolymerize well-structured films with single and multiple waveguide lattices. The materials exhibited bright green-yellow fluorescence emission through down-conversion of blue-UV excitation and light redirection from the dye emission and waveguide lattice structure. This enables the films to collect a broader spectrum of light, spanning UV–vis–NIR over an exceptionally wide angular range of ±70°. When employed as encapsulant coatings on commercial silicon solar cells, the polymer waveguide lattices exhibited significant enhancements in solar cell current density. Below 400 nm, the primary mode of enhancement is through down-conversion and light redirection from the dye emission and collection by the waveguides. Above 400 nm, the primary modes of enhancement were a combination of down-conversion, wide-angle light collection, and light redirection from the dye emission and collection by the waveguides. Waveguide lattices with higher dye concentrations produced more well-defined structures better suited for current generation in encapsulated solar cells. Under standard AM 1.5 G irradiation, we observed nominal average current density increases of 0.7 and 1.87 mA/cm2 for single waveguide lattices and two intersecting lattices, respectively, across the full ±70° range and reveal optimal dye concentrations and suitable lattice structures for solar cell performance. Our findings demonstrate the significant potential of incorporating down-converting fluorescent dyes in polymer waveguide lattices for improving the current spectral and angular response of solar cell technologies toward increasing clean energy in the energy grid.
more »
« less
Plasmonic Nanoparticle Lattice Devices for White‐Light Lasing
This paper reports a plasmonic nanolaser architecture that can produce white-light emission. We designed a laser device based on a mixed dye solution used as gain material sandwiched between two Al nanoparticle (NP) square lattices of different periodicities. The (±1, 0) and (±1, ±1) band-edge surface lattice resonance modes of one NP lattice and the (±1, 0) band-edge mode of the other NP lattice function as nanocavity modes for red, blue, and green lasing respectively. From a single Al NP lattice, simultaneous red and blue lasing was realized from a binary dye solution, and the relative intensities of the two colors were controlled by the volume ratio of the dyes. Also, we constructed a laser device by sandwiching dye solutions between two Al NP lattices with different periodicities, which enables red-green and blue-green lasing. With a combination of three dyes as liquid gain, we realized red, green, and blue lasing for a white-light emission profile.
more »
« less
- PAR ID:
- 10329054
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Page Range / eLocation ID:
- 2103262
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper describes how moiré plasmonic nanoparticle lattices can exhibit lasing action over a broad wavelength and wavevector range. Moiré nanolithography is combined with the PEEL (Photolithography, Etching, Electron‐beam deposition, and Lift‐off) process to fabricate in‐plane incommensurate lattices with optical properties beyond the restricted geometries of Bravais lattices. Because of increased rotational symmetry, moiré lattices support a larger number of transverse electric and transverse magnetic modes relative to their periodic base lattices. It is found that multidirectional lasing characteristics can be predicted by the symmetry of the moiré reciprocal lattice. Incommensurate moiré plasmonic lattices combine advantages of the dense band structures observed in aperiodic lattices with that of predicted modes in Bravais lattices for light‐based technologies in coherent light sources and multiplexed data transfer.more » « less
-
Surface-emitting semiconductor lasers have been widely used in data communications, sensing, and recently in Face ID and augmented reality glasses. Here, we report the first achievement of an all-epitaxial, distributed Bragg reflector (DBR)–free electrically injected surface-emitting green laser by exploiting the photonic band edge modes formed in dislocation-free gallium nitride nanocrystal arrays, instead of using conventional DBRs. The device operates at ~523 nm and exhibits a threshold current of ~400 A/cm 2 , which is over one order of magnitude lower compared to previously reported blue laser diodes. Our studies open a new paradigm for developing low-threshold surface-emitting laser diodes from the ultraviolet to the deep visible (~200 to 600 nm), wherein the device performance is no longer limited by the lack of high-quality DBRs, large lattice mismatch, and substrate availability.more » « less
-
null (Ed.)Organic hybrid light-emitting diodes (hybrid-LEDs) employ organic dyes as light converters on top of commercial blue inorganic LEDs, replacing incumbent inorganic phosphor light converters synthesized from rare-earth and/or toxic metallic elements to optimize device environmental sustainability. Here, we present two naturally derived organic dyes for hybrid-LEDs, highlighting stability and efficiency enhancement based on a novel “acceptor–acceptor” molecular design. This “acceptor–acceptor” skeleton comprises theobromine and thiadiazole, two electron-withdrawing groups that lower energy levels and suppress photooxidation. This differentiates these dyes from the widely adopted “donor–acceptor” skeleton, where photooxidation is facilitated by the presence of electron-donating units. Simultaneously, sidechains on organic dyes used to enhance solution processability, crucial for film transparency, introduce an additional photooxidation pathway. With this “acceptor–acceptor” skeleton, the destabilization from sidechains was offset by the stability enhancement from the electronic effects in the backbone. When blended within an industrial polymer, poly(styrene-butadiene-styrene) (SBS), their enhanced solubility enables the formation of highly transparent films, crucial for reducing scattering loss in LEDs. Furthermore, resultant dye-SBS films achieved photoluminescence quantum yields (PLQYs) of around 90% under ambient conditions. Taking advantage of their transparency and solution processability, we fabricated a waveguide with this theobromine-dye-SBS composite, which was subsequentially assembled into an edge-lit LED device of no glare and enhanced aesthetics.more » « less
-
null (Ed.)Abstract Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.more » « less
An official website of the United States government

